18th Annual MCI Symposium • Special Topic Workshop • Alzheimer's Public Educational Forum

Assessment of the Aging Brain Using Computing Technology

Layton Professor of Neurology & Biomedical Engineering ORCATECH - Oregon Center for Aging & Technology

Jeffrey Kaye

NIA - Layton Aging & Alzheimer's Disease Research Center

www.mcisymposium.org

January 18-19, 2020 • Miami, FLA

Research support to Oregon Health & Science University from: NIH (U2C AG054397, P30 AG008017, P30 AG024978, R01 AG051628, R01 AG051628, U01 AG010483, U24 AG057437), National Science Foundation, the Department of Veterans Affairs, Merck, AbbVie, Novartis, Kyowa, and Eisai

Compensated (in the last 24 months) for serving on Data Safety Monitoring Committees for Eli Lilly and Suven

Compensated for serving on the Scientific Advisory Board for Sage Bionetworks

Receive reimbursement through Medicare or commercial insurance plans for providing clinical assessment and care for patients

Serve on the editorial advisory board and as Associate Editor of Alzheimer's & Dementia and as Associate Editor for the Journal of Translational Engineering in Health and Medicine

The fundamental challenge... Detecting (assessing) meaningful change

- Current Outcome Measures cognitive tests, functional scales *are poorly sensitive to change*
- Current Assessment Paradigms (brief, sparsely spaced queries, exams, selfreport methods) - *do not optimally identify meaningful, ecologically valid change.*

Change the Paradigm---> Improve the Signal

- Brief
- Episodic
- Clinic-based
- Inconvenient
- Obtrusive
- Proxy Measures of Function
- Cognitive Tests Artificial
- Inter-rater/test Variability
- Intra-person Variability

Araujo, et al. How Much Time Do You Spend Online? Understanding and Improving the Accuracy of Self-Reported Measures of Internet Use. Communication

Error Estimated Minutes of Internet Use > 90 minutes/day

	Self-Reports		Tracking Data		
N = 690	Yesterday	Average day	Yesterday	Average day	
Self-Reports					
Yesterday	1	.797**	.294**	.311**	
Average Day		1	229**	.291**	
Tracking Data					
Yesterday			1	.702**	
Average Day				1	

How changing the approach may improve the ability to detect *meaningful* change

Example: The Power of High Dimensional Frequent Data Capture

The Value of High Dimensional Frequent Data Capture Example: Increase the *efficiency and value* of clinical trials

Hiroko Dodge

Chao-Yi Wu

										0	•
		Current Method	Continuous	s Measures		 Reduces and/or ti 	s require me to id	d sai entify	mple v <i>mea</i>	size aning	ful
		LM Delaye Recall*	d Computer Use**	Walking Speed**		change. • Reduces	s exposi	ire to	harr	n (fev	wer
SAMPLE S SHOW	IZE TO	688	10	94		needed/More pre	fewer e ecise est	xpos timat	ed) es of	the	
50% EFFE				Empiri	cally De	erived Slope D	ifferences	Trea	atment	effect	size
SAMPLE S SHOW 30	N	lodel	Outcome	Group on sl	effect ope	Standard error	p-value	20%	30%	40%	50%
EFFECT SAMPLE S	Gen	eralized	Likelihood of 30 percentile lov	0.03 v	454	0.01407	0.01	22	14	10	10
SHOW 20 EFFECT	Effect	ts Model	Likelihood of 40	Oth v 0.02	660	0.01335	0.04	50	28	20	16

Replicated on independent data set, 2019

RCATECH

MCI Prevention Trial - Sample Size Estimates

Similar results with sleep data: Wu, 2019

Dodge, et al., PLoS One, 2015, Wu et al. CTAD, 2019

Many ways to capture this data...Is it working?

Evidence for What Works... (systematic reviews, examples)

Vegesna A, Tran M, Angelassio M, Arcona S. Remote Patient Monitoring via Non-Invasive Digital Technologies: A Systematic Review. Telemed J E Health. 2017 Jan;23(1):3-17

Ienca M, Fabrice J, Elger B, Caon M, Pappagallo AS, Kressig RW, Wangmo T. Intelligent Assistive Technology for Alzheimer's Disease and Other Dementias: A Systematic Review. Journal of Alzheimer's Disease. 2017 Jan 1;56(4):1301-40.

Van der Roest HG, Wenborn J, Pastink C, Dröes RM, Orrell M. Assistive technology for memory support in dementia. Cochrane Database of Systematic Reviews 2017, Issue 6. Art. No.: CD009627.DOI: 10.1002/14651858.CD009627.pub2.

Lussier M, Lavoie M, Giroux S, Consel C, Guay M, Macoir J, Hudon C, Lorrain D, Talbot L, Langlois F, Pigot H. Early Detection of Mild Cognitive Impairment With In-Home Monitoring Sensor Technologies Using Functional Measures: A Systematic Review. IEEE journal of biomedical and health informatics. 2018 May 7;23(2):838-47.

Byambasuren O, Sanders S, Beller E, Glasziou P. Prescribable mHealth apps identified from an overview of systematic reviews. npj Digital Medicine. 2018 May 9;1(1):12.

Granja C, Janssen W, Johansen MA. Factors Determining the Success and Failure of eHealth Interventions: Systematic Review of the Literature. J Med Internet Res 2018;20(5):e10235

Bakker JP, et al. A systematic review of feasibility studies promoting the use of mobile technologies in clinical research. npi: Digital Medicine. 2019 Jun 6;2(1):47.

Mancioppi G, Fiorini L, Timpano Sportiello M, Cavallo F. Novel Technological Solutions for Assessment, Treatment, and Assistance in Mild Cognitive Impairment. Front Neuroinform. 2019 Aug 13;13:58. doi: 10.3389/fninf.2019.00058.

Piau A, Wild K, Mattek N, Kaye J. Current State of Digital Biomarker Technologies for Real-Life, Home-Based Monitoring of Cognitive Function for Mild Cognitive Impairment to Mild Alzheimer Disease and Implications for Clinical Care: Systematic Review. J Med Internet Res 2019;21(8):e12785

Summary of Evidence & Gaps

- Overall, few studies relative to other research areas: a small field
- Benefits may be reported but mainly based on low-quality studies (small samples, short study periods, non-diverse populations, not replicated)
- Technologies used are wide-ranging (passive sensors, wearables, apps, integrated multi-domain systems...) and used in many settings/combinations of assessments and interventions
- Standardization gaps: variability in the devices or technologies used (hardware/software), and limits in specification of the systems deployed and the analytic algorithms applied
- Usability and adoption
- Deployment barriers are prevalent (ease of use, research expertise, costs, lack of evidence of efficacy or effectiveness)

To Address Gaps - Build Evidence

- **CART** Collaborative Aging Research Using Technology
- Initiative established to address needed research capability for evidence building (facilitated by technology) in aging research.
- Goal: Design and implement a scalable, disseminated technology system ('platform') for more effective aging research, ultimately deployable to 10,000+ homes
- Focus on diversity, use case flexibility, technology agnosticism, "futureproofing", facilitating secure data sharing.
- Interagency U2C (U2CAG054397) with NIH (NIA, NIBIB, NCI, NINDS, NINR, NCATS, OBSSR,) and VA
- Research Team: ORCATECH/Oregon Health & Science University, NIA, and U.
 Miami, Cornell, Rush, OSU, U. Penn, Intel, VA VISN 20

Technology Agnostic, Use-case Flexible, Sharable Research Platform

Ø

End-to-End System

Considerations for Research Assessments

"IT MAY VERY WELL BRING ABOUT IMMORTALITY, BUT IT WILL TAKE FOREVER TO TEST IT."

Bedtime: Withings Watch vs. Actiwatch

Sleep Duration: Withings Watch vs. Actiwatch

Validation

Kaye, et al. Alzheimers Dement. 2014; Silbert et al., Alzheimers Dement, 2015

Kaye et al. CTAD, 2019

Cognition

Mobility

Socialization

Kaye, et al. AAIC 2019

Diversity Matters: CART Enrollment

Characteristic mean (SD) or %	Low-Income	Veterans	Latino	MARS
n	73	117	29	68
Age (years)	71.4 (6.5)	70.8 (6.3)	73.1 (7.1)	76.8 (6.0)
Female (%)	73	44	79	79
94% remain actively	y enrolled afte	r a mean of	12 months	of follow-up
Live alone (%)	92	15	69	/6

	52	_0		10
Drives a car (%)	40	89	91	89
Uses a smart phone (%)	77	73	100	85
Has an iPhone (%)	28	39	58	43
Follow-up time, months	14.5 (4.4)	13.4 (3.8)	9.5 (5.0)	8.5 (4.5)
MoCA or MMSE*	24.9 (2.9)	23.3 (3.4)	25.1 (3.3)	28.7 (1.2)
IADL	0.2 (0.5)	0.3 (0.9)	0.2 (0.4)	N/A
MCI (%)	18	38	21	7

* RUSH data is for MMSE

Alzheimers Dement.: Diagnosis, Assessment & Disease Monitoring, 2015; Seelye et al.

Alzheimer's Disease & Assoc. Disorders, 2015; Seelye et al., Alzheimer & Dementia, 2018

Abbreviations: IQR, interquartile range; MCI, mild cognitive impairment.

NOTE. *P < .05, **P < .01.

Cognition: Computer Use, online questionnaire completion

Months

Time of Day Completed: Longitudinal scatter plot of differences in median questionnaire start time of day (minutes from 5 AM) by week for MCI (Black) and cognitively intact (gray) participants.

Seelye et al. Alzheimer's Dis. & Assoc. Disorders, 2015

Time to Complete: Longitudinal Change in Survey Completion Time (in seconds) by Group in the 12 month period *before* MCI diagnosis (calculated regression lines from the mixed effect model) Seelye et al., Alzheimer & Dementia, 2018

Adri Seelye

Experience Sampling: *Online Weekly Activity & Health Questionnaire*

		Q4.2 You / indica	ated that you had medication changes in the last / week. Please answer / the following quest
	1	AWAY	In the past week, have you been away from home / overnight?
٦	2	VISITORS	In the past week, have you had visitors who stayed with you in / your home for a night or more?
	3	MEDICATIONS	In the past week, have you had a change to any of your medications / OR started a new one?
	4	FALLS	In the past week, have you had a fall, including a slip or trip, in / which you lost your balance a
┥	5	ACCIDENTS/INJURIES	In the past week, have you had any other injuries or / accidents?
	6	HOSPITALIZATION/ER	In the past week, have you had any hospitalizations or emergency / room visits (not including routi
	7	HEALTH CHANGE/ILLNESS	In the past week, has your physical health limited you more than / usual? For instance, did illness
	8	LIFE SPACE	In the past week, have you had any changes in your home-space or living situation? For example, r
┥			In the past week, is someone newly assisting you with medication management, bathing, dressing
	9	ASSISTANCE	or
	10	MOOD - BLUE	Have you felt downhearted or blue for three or more days in the / past week?
	11	MOOD - LONELY	In the past week I felt lonely.
-	12	PAIN LEVEL	Please rate your pain by indicating the number that best describes / your pain on average in the la No Pain:Worst Imaginable
	13	PAIN INTERFERENCE	During the past week, how much did pain interfere with your normal / activities or work (including Pain interfered with my normal activities
		Q4.11 Did you hav	ve any other medication / changes in the past week?

Online tools for assessment: Usability, Tests, Engagement

(8)

The CART Initiative

Medication Adherence (Function & Cognition): 'IADL' Task & Test of Prospective Memory

Johanna Austin

Continuous monitoring of medication adherence timing may identify patients experiencing cognitive decline

- Individuals with lower cognitive function have more 'spread' in the timing of taking their medications (p < .014)
- Increase over time in the spread of timing of taking their medications (P < .012)

Physical Activity and Mobility Behaviors

Room activity distributions & gait speed differentiating MCI vs not MCI

Hiroko Dodge

Room	Bedroom	Bathroom	Kitchen	Living Room	Combined
F _{0.5} Score*	0.842	0.829	0.813	0.826	0.856
*E _ Secres window size () = 20 weaks slide size = 4 weaks (with leave one subject out cross validation)					

 $*F_{0.5}$ Scores window size ω = 20 weeks; slide size = 4 weeks (with leave-one-subject-out cross validation)

Ahmed Akl

Akl et al. Journal of Ambient Intelligence and Smart Environments, 2015

Trajectories of gait speed over time

Dodge, et al. Neurology, 2012

Physical Activity & Mobility: Out of home assessment - Driving (and Cognition)

Highway diving

Table 2. Summary Driving Characteristics; (Per day; six month observation period)

Variable	Total	Intact	MCI	p-value
Ν	28	21	7	
Mean # of (one-way) trips per day	4.2 (1.0)	4.1 (0.9)	4.7 (1.4)	0.19
Day-to-day variability in # of trips	2.1 (0.6)	2.1 (0.5)	2.3 (0.8)	0.49
Mean distance driven per day (miles)	20 (13)	22 (13)	14 (11)	0.06
Day-to-day variability in distance driven	26 (17)	31 (17)	13 (12)	0.01*
Mean time driven per day (hours)	0.9 (0.4)	0.9 (0.4)	0.8 (0.4)	0.26
Day-to-day variability in time driven	0.7 (0.3)	0.8 (0.3)	0.5 (0.2)	<0.01**
Mean first clock starttime of driving per day	11.1 (1.2)	11.3 (1.2)	10.6 (1.4)	0.43
Day-to-day variability in first starttime (hrs)	2.8 (0.8)	2.8 (0.6)	2.7 (1.1)	0.78
Mean last clock starttime of driving per day	15.4 (1.6)	15.2 (1.4)	15.9 (1.9)	0.33
Day-to-day variability in last starttime (hrs)	3.2 (0.6)	3.2 (0.6)	3.2 (0.8)	0.79
Mean # of days monitored	206 (36)	208 (38)	201 (33)	0.70
% of days at least one trip was taken out of all days monitored	52%	49%	60%	0.21
% of driving days with >=20 miles driven	26%	27%	21%	0.51
Mean time of highway driving per day (seconds)	450 (506)	543 (533)	172 (288)	0.01*

Seelye et al. Journal of Alzheimer's Disease, 2017

hronobiological Behavior		No Differences Between Gr	oups in Self-Report Mea	sures	
CART: Association between slee regression model)	p duration and N	ACI status (Multiva	riate logistic	e valu .69	
	Odds Ratio	95% CI	P value	.21	
Mean total sleep time (hrs)	0.74	0.56 – 0.98	0.038	.77	
Age	1.10	1.02 – 1.18	0.015		
Gender (Female vs. Male)	0.36	0.15 – 0.88	0.024		
Education	0.66	0.53 – 0.83	0.0003		
 Two weeks of sleep-activity did not predict MCI Self-reported night-time sleep duration did not predict MCI 					

Hayes et al. Alzheimer Dis Assoc Disord. 2014 Hayes et al. IEEE Eng Med Biol Soc, 2010 Kaye et al AAIC, 2019

Tamara Hayes

Michael Au-Yeung

Zach Beattie

Assessments for Interventions

"I'm going to ask you a series of scary questions. When I'm done, let's see if you can guess why I'm asking them."

I-CONECT: Internet-based Conversational Engagement Clinical Trials

(PI: H. Dodge, NIA R01AG051628; NIA R01AG056102)

- Isolated 80+ yrs
- 50% African American

UNIVERSITY MICHIGA

TX: Video Chat, 4 times/week: 6 months, 2 times/ week: 6 months Control: 1/wk phone check. Novel Outcome Measures: MedTracker memory, Conversational Speech & Language Quantification; vMRI, DTI, fMRI

I-CONECT Pilot/Preliminary Results

- 89% of all possible sessions completed; Exceptional adherence – no drop-out
- MCI participants generate a greater proportion of words (mean = 2985 vs.
 2423 words) out of total number of words during conversation sessions (p=0.03).
- Logistic regression models: ROC AUC identifying MCI (vs. Nls) = 0.71 (95% CI: 0.54 - 0.89)

Dodge et al. Current Alzheimer Res. 2015

Dodge et al. Alzheimer's & Dementia: Translational Res. & Clinical Interventions, 2015 Asgari et al. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 2017

LIWC cat.	Communication	Swear	Anger	Fillers	Family
Avg. num. in MCI	46.4	7.14	37	101.5	31.14
Avg. num. in intact	38.7	4.8	49.8	141.6	41.8
p-value	0.002	0.005	0.054	0.067	0.08

EVALUATE – AD: Ecologically Valid, Ambient, Longitudinal and Unbiased Assessment of Treatment Efficacy in Alzheimer's Disease

- Establish Digital Biomarkers sensitive to clinical change associated with conventional AD TXs
- ORCATECH / CART platform (60 subjects: 30 patients/30 care partners; 30 households)

Reynolds et al. 2017, unpublished Thomas et al. Dement Geriatr Cogn Disord, 2019

DYAD-LEVEL INTERDEPENDENCE - Sleep

How related is the *variability* in sleep patterns of two older adults co-residing as couples?

Random Effects (within-dyad covariances)	Std. Estimate (r)	P-value (two-tailed)	95% CI
M-F Sleep Covariance (Level) (score x at some time point)	0.130	< 0.001	[0.096; 0.162]
M-F Sleep Covariance (Velocity) (speed that a score is changing: <i>dx/ dt</i>)	0.532	< 0.001	[0.390; 0.671]
M-F Sleep Covariance (Acceleration) (rate that speed is changing: $\frac{d^2x}{dt^2}$)	0.262	< 0.001	[0.191; 0.330]

Summary

A wide range of pervasive computing solutions are available for deployment in dementia research

We have Come a Long Way – HBA 2005 Kiosk Arm Equipment : Cable and Parts Guide Image: State of the st

Many ways to use this technology to improve assessment: *The right tool for the right job*

"If you have a smartphone everything is not an app"

Much to do: Need to grow & move the field forward

Current Participants: 511 Current Homes: 432

ORCATECH-CART 'Ecosystem'

Acknowledgements

PEOPLE:

- Steve Agritelley
- Carlos Almirola
- Michael AuYeung
- Lisa Barnes
- Zach Beattie
- Hannah Bernard
- Chelsea Burchett
- Patrick Chiang
- Kevin Cosgrove
- Kathleen Crowe
- Sara Czaja

- Hiroko Dodge
- Sejal Dua
- Ames Elliott
- Nicole Fleming
- Charlene Gamboa
- Ona Golonka
- Sarah Gothard
- Farzin Guilak
- Sam Harbison
- Stephanie Irish
- Sindy Jaramillo

- Victoria Jimenez
- Jason Karlawish
- Jeff Kaye
- Judy Kornfeld
- ChinChin Lee
- Jonathan Lee
- Emily Lehman
- Miranda Lim
- Daria Loi
- Emily Lore
- David Lowenstein

- Jennifer Marcoe
- Nora Mattek
- Charlie Quinn
- Christy Reynolds
- Thomas Riley
- Nathaniel Rodrigues
- Gregory Sebastian
- Nicole Sharma
- Sarah Shull
- Lisa Silbert
- Nina Silverberg

- Mary Alice Siqueland
- Tim Truty
- Rachel Wall
- Sarah Weingast
- Kathy Wild
- Jonathan Williams
- Phelps Witter
- Chao-Yi Wu
- Alex Yeargers
- Jon Yeargers
- Tracy Zitzelberger

FUNDING: NIH U2CAG0543701 (Office Of The Director, National Institutes Of Health (OD), National Center For Advancing Translational Sciences (NCATS), National Institute Of Biomedical Imaging And Bioengineering (NIBIB), National Institute Of Nursing Research (NINR), National Institute On Aging (NIA), National Institute Of Neurological Disorders And Stroke (NINDS), National Cancer Institute (NCI) and the Veteran's Administration); VA grant IIR 17-144, Oregon Roybal Center for Translational Research on Aging (NIA P30 AG024978), MARS, R01AG22018; the Oregon Clinical Translational Research Institute CTSA award (UL1TR002369).

High dimensional data fusion model predicting MCI

Predicting MCI Transitions: Sensitivity Analysis

 Likelihood of a MCI transition within the next 24 months – ROC AUC under curve= 0.95

Model Fit & ROC/AUC Results				
Model	AUC (SD)			
Behavior 1	0.85 (0.004)			
Behavior 2	0.85 (0.004)			
Clinical	0.88 (0.004)			
Full	0.95 (0.002)			

