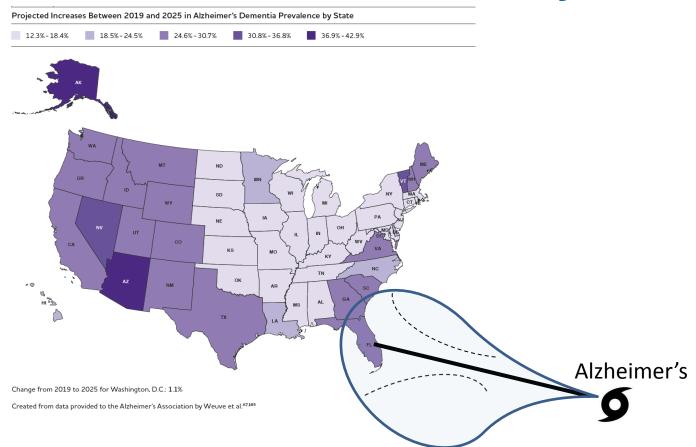
Biomedical Informatics and eHealth Core

Demetrius M. Maraganore, MD B.J. and Eve Wilder Professor of Alzheimer's Disease University of Florida, Gainesville, FL

Disclosures

 I came to Florida to find the Fountain of Youth


- To preserve and improve brain health
- By preventing cognitive decline and dementia
- Using biomedical informatic & eHealth approaches

Why Florida?

- Third most populous and oldest state per capita
- Most cases of Alzheimer's disease and related disorders (ADRD) per capita
- The only state that includes ADRD as a priority area in it's State Health Improvement Plan
 - Identify a statewide system of resources and support to formalize the ADRD network
 - Strengthen the capacity of care organizations to assess, diagnose, and treat individuals with ADRD and expand support for caregivers
 - Protect individuals with ADRD from further vulnerability

In the Cone of Uncertainty

Why Biomedical Informatics & eHealth?

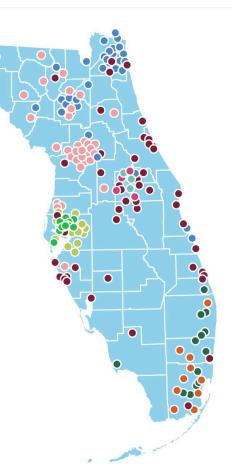
- The electronic medical record (EMR) is the federally mandated "agora" (marketplace) for all healthcare transactions
- EMRs have the capacity to capture hundreds of discrete data elements per encounter, and millions of discrete data elements per person
- EMRs have the capacity to provide clinical decision support (CDS) at the point-of-care
- Common data elements exist across commercial EMRs, in support of platform agnostic registries

1Florida ADRC Bioinformatics and eHealth Core

2

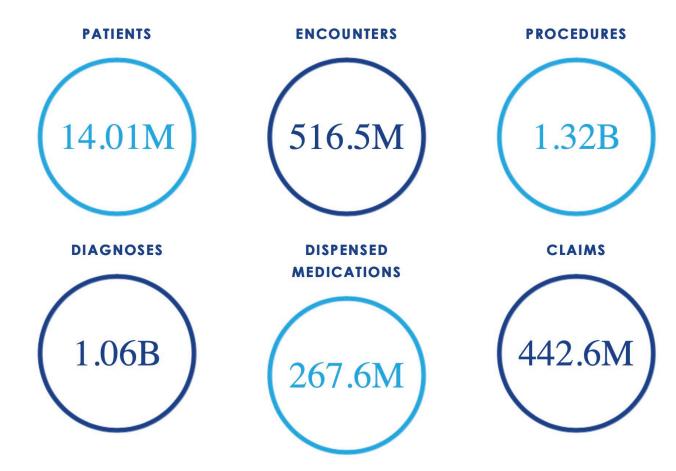
UNIVERSITY OF FLORIDA AND UF
 HEALTH

FLORIDA STATE UNIVERSITY AND THE REGIONAL CAMPUS PRACTICE PARTNERS


- UNIVERSITY OF MIAMI AND
 UHEALTH
- ORLANDO HEALTH SYSTEM
- ADVENTHEALTH
- TALLAHASSEE MEMORIAL HEALTHCARE
- TAMPA GENERAL HOSPITAL
- BOND COMMUNITY HEALTH CENTER
 INC.
- NICKLAUS CHILDREN'S HOSPITAL
- COMMUNITYHEALTH IT
- CAPITAL HEALTH PLAN
- UNIVERSITY OF SOUTH FLORIDA
 AND USF HEALTH

OneFlorida Data Trust

- 4,100 providers
- 1,240 practices
- 22 hospitals


20

• 50% of Floridians

https://onefloridaconsortium.org

1Florida ADRC Bioinformatics and eHealth Core

Aim 1. Data Access

 Provide 1Florida ADRC and other ADRC investigators access to a large statewide repository of linked EMR, claims and social determinants of health (SDoH) data to generate and test hypotheses for ADRD.

Aim 2. Informatic Tools

 Provide 1Florida ADRC and other ADRC investigators with informatics tools that support study feasibility determination, cohort discovery, clinical trials, and population health initiatives in ADRD.

Aim 3. Special Populations

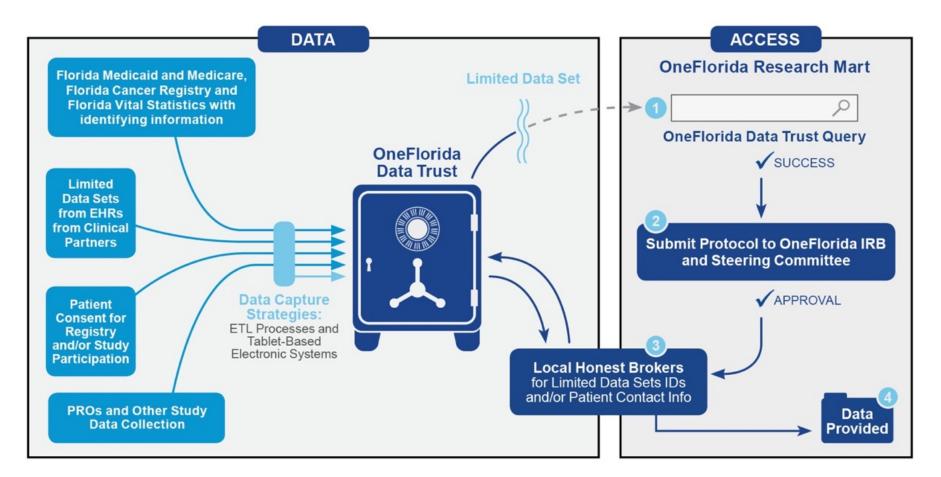
- Facilitate use of the OneFlorida Data Trust as a registry to access existing data and/or collect new data from special populations and their matched controls.
 Aim 4. Linkage
- Create linkages with other 1Florida ADRC cores, other ADRCs, and other stakeholder organizations such as the NIA and the Alzheimer's Association.

ADRD Diagnoses Registered in the OneFlorida Data Trust

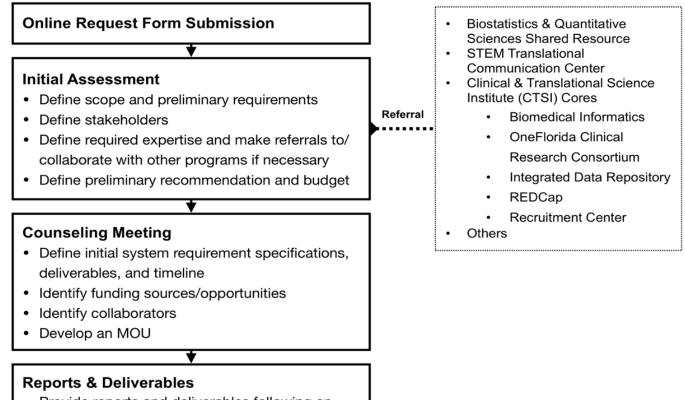
	MCI	AD	VaD	LBD	FTD	PPA	All*
ICD-10 codes	G31.84 F09	G30.0 G30.1 G30.8 G30.9	F01.50 F01.51	G31.83	G31.09	G31.01	
ICD-9 codes	331.83 249.9	331.0	290.40 290.41	331.82	331.19	331.11	
Ν	44,068	99,555	31,332	8,968	2,138	512	161,852
Sex							
Male	19,160	31,227	12,314	4,485	990	223	59,096
	(43.5%)	(31.4%)	(39.3%)	(50.0%)	(46.3%)	(43.6%)	(36.5%)
Female	24,895	68,055	18,999	4,467	1,147	288	102,441
	(56.5%)	(68.4%)	(60.6%)	(49.8%)	(53.6%)	(56.3%)	(63.3%)
Unknown	13	273	19	16	1	1	315
	(0.0%)	(0.3%)	(0.1%)	(0.2%)	(0.0%)	(0.2%)	(0.2%)
Race							
White	23,735	55,458	16,874	5,704	1,392	347	89,855
	(53.9%)	(55.7%)	(53.9%)	(63.6%)	(65.1%)	(67.8%)	(55.5%)
Black	6,366	12,367	6,561	973	217	47	22,845
	(14.4%)	(12.4%)	(20.9%)	(10.8%)	(10.1%)	(9.2%)	(14.1%)
Asian	372	876	297	90	23	6	1,464
	(0.8%)	(0.9%)	(0.9%)	(1.0%)	(1.1%)	(1.2%)	(0.9%)
Unknown	6,822	7,096	2,007	439	183	41	14,624
	(15.5%)	(7.1%)	(6.4%)	(4.9%)	(8.6%)	(8.0%)	(9.0%)
Ethnicity	. ,			. ,		. ,	
Hispanic	9,492	25,540	5,711	1,974	371	77	36,956
	(21.5%)	(25.7%)	(18.2%)	(22.0%)	(17.4%)	(15.0%)	(22.8%)

* MCI = Mild Cognitive Impairment, AD = Alzheimer's Disease, VaD = Vascular Dementia, LBD = Lewy Body Dementia, FTD = Frontotemporal Dementia, PPA = Primary Progressive Aphasia, All = All of the Diagnoses Combined

Prevalence rates of AD in communities


Communities (Ages 65+)	AD Prevalence Rate
Arabs (Israel) [1]	9.8%
Koreans (Republic of Korea) [2]	5.7%
Tuscans (Italy) [3]	4.2%
Floridians (OneFlorida Data Trust)	5.4%

1. Afgin AE, Massarwa M, Schechtman E, Israeli-Korn SD, Strugatsky R, Abuful A, Farrer LA, Friedland RP, Inzelberg R. High prevalence of mild cognitive impairment and Alzheimer's disease in arabic villages in northern Israel: impact of gender and education. J Alzheimers Dis. 2012;29(2):431-9.


2. Kim KW, Park JH, Kim MH, Kim MD, Kim BJ, Kim SK, Kim JL, Moon SW, Bae JN, Woo JI, Ryu SH, Yoon JC, Lee NJ, Lee DY, Lee DW, Lee SB, Lee JJ, Lee JY, Lee CU, Chang SM, Jhoo JH, Cho MJ. A nationwide survey on the prevalence of dementia and mild cognitive impairment in South Korea. J Alzheimers Dis. 2011;23(2):281-91.

3. Tognoni G, Ceravolo R, Nucciarone B, Bianchi F, Dell'Agnello G, Ghicopulos I, Siciliano G, Murri L. From mild cognitive impairment to dementia: a prevalence study in a district of Tuscany, Italy. Acta Neurol Scand. 2005 Aug;112(2):65-71.

OneFlorida Data Trust Infrastructure

Linkages with 1Florida ADRC Cores, Other ADRCs and Stakeholders

- Provide reports and deliverables following an Agile-like approach
- Deliver final results based on agreed timeline

Examples of ADRD Related Applications of Biomedical Informatics & eHealth Core

Utilizing Data from the EMR to Predict Alzheimer's and Dementia Risk



 Understanding Resistance, Resilience, and Repair in the Health Span (the Over 90 Moonshot)

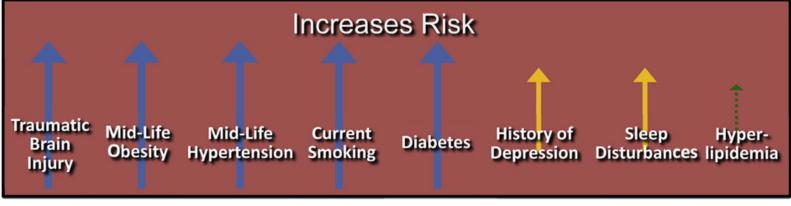
Utilizing Data from the EMR to Predict Alzheimer's and Dementia Risk

Utilizing Data from the EMR to Predict Alzheimer's and Dementia Risk

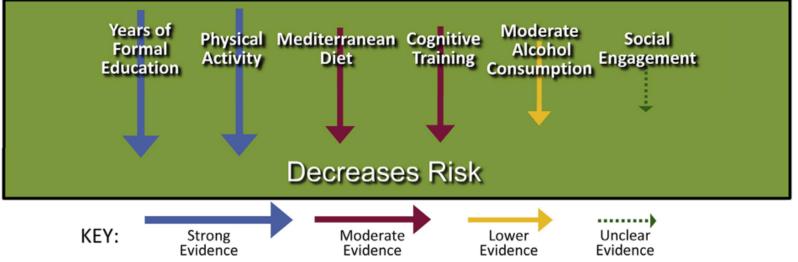
Aim 1: Model Building

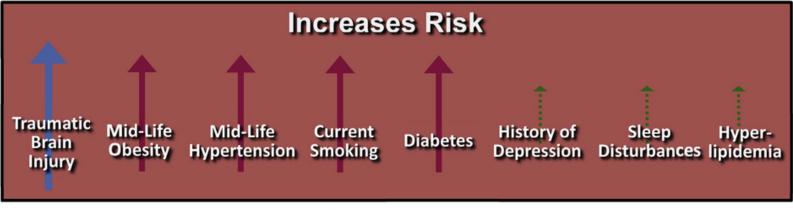
• Use data captured by the UF EMR to develop an ADRD Prediction Model

Aim 2: Replication

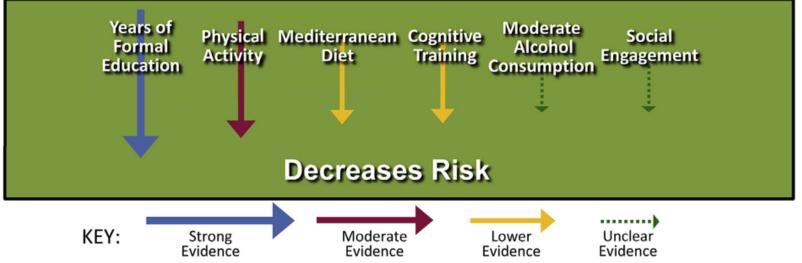

 Replicate the model using the OneFlorida Data Trust registry (<u>http://onefloridaconsortium.org</u>)

Aim 3: Implementation


• Integrate the replicated model into the UF EMR using clinical decision support tools that identify and refer high risk patient to brain health clinics

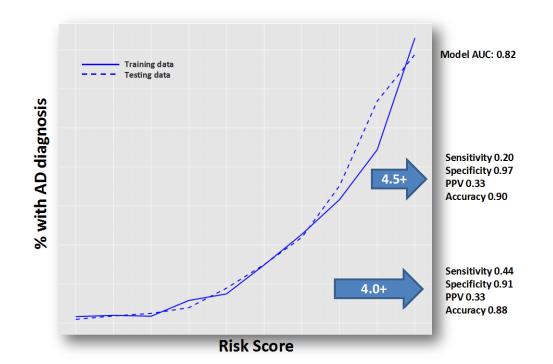

Aim 4: Dissemination

• Share the replicated model and tools with other OneFlorida sites

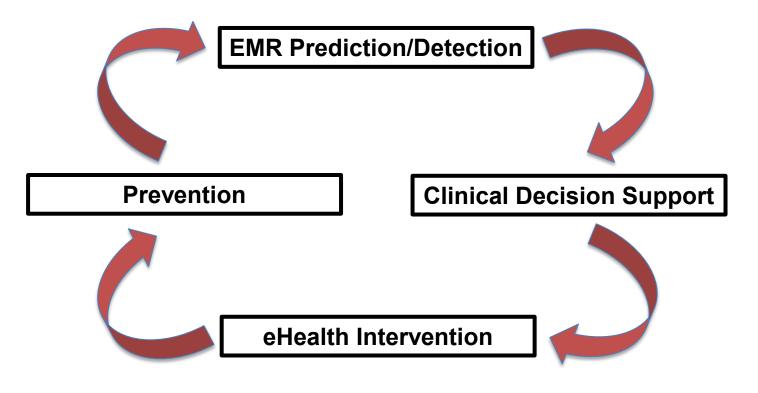


COGNITIVE DECLINE

DEMENTIA


Kitty Hawk Experiment

- NorthShore University HealthSystem (Evanston, IL)
- Can we use the EMR to predict cognitive impairment and dementia (including Alzheimer's)?


- 29,246 people aged 60+ with a primary visit in 2009 62% women
- 82% Caucasian 2,193 (7.5%) diagnosed with AD over 5 years

The AD model: under the hood

	Parame	eter Esř m	Odds Ra*o Es* mate					
Variables	Coeffic ent	95%	% CI	OR	95% CI			
Gender								
Female	Ref	-	-	-	-	-		
Male	0.38	0.26	0.50	1.46	1.29	1.64		
Family History Alzheimer's	0.51	0.12	0.91	1.67	1.12	2.49		
Concussion	0.58	0.36	0.81	1.79	1.43	2.24		
Stroke	0.24	0.09	0.39	1.27	1.09	1.48		
Diabetes	0.20	0.06	0.34	1.22	1.06	1.41		
Sleep Behavior Disorder	2.40	1.21	3.59	11.06	3.37	36.31		
Not Alcohol User	0.15	0.03	0.27	1.16	1.04	1.31		
Depression Age	0.78	0.63	0.93	2.18	1.88	2.54		
Agegroups(59,64]	Ref	-	-	-	-	-		
Agegroups(64,69]	0.86	0.49	1.24	2.37	1.63	3.46		
Agegroups(69,74]	1.84	1.48	2.20	6.27	4.38	<mark>8.9</mark> 9		
Agegroups(74,79]	2.54	2.19	2.89	12.67	8.93	17.99		
Agegroups(79,84]	3.21	2.87	3.56	24.87	17.62	35.10		
Agegroups(84,89]	3.60	3.24	3.96	36.64	25.56	52.52		
Agegroups(89,109]	4.07	3.68	4.47	58.79	39.59	87.29		
BMI								
BMI[30,200)	Ref	-	-	-	-	-		
BMI[25,30)	0.13	-0.02	0.28	1.14	0.98	1.32		
BMI[18.5,25)	0.43	0.28	0.58	1.54	1.33	1.79		
BMI[0,18.5)	0.86	0.43	1.29	2.36	1.53	3.63		

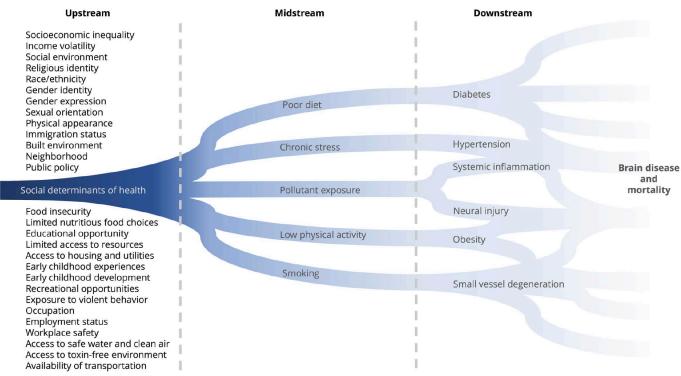
eHealth: Prediction and Prevention in silico

Closed Loop System

Understanding Resistance, Resilience, and Repair in the Health Span (the Over 90 Moonshot)

Aim 1: Computable Phenotype

 Identify an informatics-based computable phenotypes that enable identification of individuals over 90 who successfully aged by mining medical & social determinants of health information available within the OneFlorida Data Trust

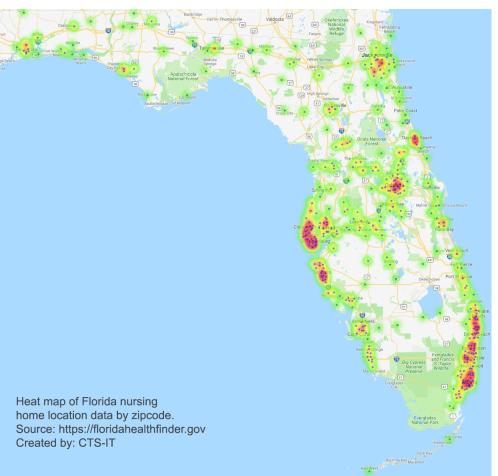

Aim 2: Recontact

 Directly assess both the resources needed to re-contact individuals over 90 and the participation rate of those contacted

Aim 3: Interventions

 Conduct a pilot study to inform on the feasibility of using computable phenotypes from the OneFlorida Data Trust to identify an over 90 cohort for an intervention aimed at maintaining resilience and independence **Figure** Conceptual framework for a population brain health approach that targets fundamental determinants of disease with fundamental interventions

a.k.a. Social Determinants


Risk factors for neurologic illness can be grouped by how early they enter the chain of events leading to clinical presentation and determining life expectancy. Downstream factors are immediate to disease and mortality. Midstream factors are intermediate. Upstream factors are fundamental determinants of health and disease—the risks of risks—such as the changing socioeconomic environment that distributes wealth, power, and opportunities. Interventions strategically targeting upstream factors are more likely to be effective at reducing neurologic disease risk compared to downstream or midstream interventions. Adapted from National Collaborating Centre for Determinants of Health (2014). Let's talk: Moving upstream. Antigonish, NS: National Collaborating Centre for Determinants of Health; St. Francis Xavier University. Available at: nccdh.ca/images/uploads/Moving_Upstream_Final_En.pdf. Accessed June 25, 2019.

What is Successful Aging?

And what is computable?

	1	2	3	4	5	6	7	8	9	10
Alive, 90 years or older										
No nursing home placement [NOT COMPUTABLE; ZIP CODE AS PROXY]										
No palliative/hospice care										
Low comorbidity index (Charlson, Elixhauser)										
Low healthcare utilization (hospitalizations, ER)										
Free of dementia, Alzheimer's, related disorder										
Free of stroke										
Free of Parkinson's										
Free of other progressive brain disorders										
Free of communication disorder (e.g., aphasia)										
Free of deafferentation										
Free of gait disorder or falls										
Free of depression or related disorders										
Free of major psychiatric disorders										
Free of extremes of BMI (<18.5, >40)										
Free of chronic opiate use/addiction										
Free of home O2 use										
Free of wheelchair/walker prescriptions										
Free of handicap parking permit [NOT COMPUTABLE]										

Florida Zip Codes with Nursing Homes

Successful Aging in Florida

Characteristics	Over 90			Over 90 Non-Demented		r 90 mented ig Home*	Over 90 Successful Aging (all parameters)		
	Ν	%	Ν	%	Ν	%	Ν	%	
Total	281,927		187,514	66.5%	65,008	23.1%	45,710	16.2%	
Demographic									
Sex									
Female	187,092	66.4%	116,405	62.1%	41,097	63.2%	28,276	61.9%	
Male	91,511	32.5%	67,831	36.2%	23,618	36.3%	17,158	37.5%	
Unknown	3,324	1.2%	3,278	1.7%	293	0.5%	276	0.6%	
Race									
White	155,689	55.2%	97,549	52.0%	32,845	50.5%	20,687	45.3%	
African American	26,356	9.3%	15,728	8.4%	5,528	8.5%	3,816	8.3%	
American Indian	311	0.1%	206	0.1%	64	0.1%	34	0.1%	
Asian	2,847	1.0%	1,936	1.0%	775	1.2%	484	1.1%	
Pacific Islander	112	0.0%	89	0.0%	44	0.1%	33	0.1%	
Multi-race	2,330	0.8%	1,787	1.0%	637	1.0%	433	0.9%	
Other	53,420	18.9%	33,676	18.0%	13,747	21.1%	10,515	23.0%	
Unknown	40,862	14.5%	36,543	19.5%	11,368	17.5%	9,708	21.2%	
Ethnicity									
Hispanic	51,115	18.1%	32,401	17.3%	14,074	21.6%	10,009	21.9%	
Non-Hispanic	172,279	61.1%	106,301	56.7%	35,529	54.7%	22,712	49.7%	
Unknown	58,533	20.8%	48,812	26.0%	15,405	23.7%	12,989	28.4%	

*Zip code as proxy

Long Term Goal: The Fountain of Youth

PONCE DE LEON DISCOVERS THE FOUNTAIN OF FLATTERY

- Whole genome study of Over 90
 Floridians who are successfully aged
- Stratify by APOE genotype

 e4/e4 or e4/* versus */*
- What genomic or other factors allow you to age to 90+ free of dementia, despite carrying an Alzheimer risk allele?
- Leverage that knowledge to develop Rx's promoting successful aging

- 12 networks
- 857,000+ providers
- 348 health systems

Ultractional Research Institute

HealthCore

NYC-CDRN New York City Clinical Data Research Network

