Biomarkers for LBD

David J. Irwin MD

Penn Digital Neuropathology Lab

Penn Lewy Body Disease Association Center of Excellence

Penn Frontotemporal Degeneration Center

University of Pennsylvania Perelman School of Medicine

RESEARCH CENTERS OF EXCELLENCE

Disclosures

LBDA Scientific Advisory Board (non-compensated).

> Legal consultation regarding cognitive impairment.

Research funding: NIH/NINDS, Brightfocus Foundation and Penn Institute on Aging.

Overview

>Biomarkers for α-synucleinopathy

Interpretation of AD biomarkers in LBD

Lewy body diseases: Clinicopathological Diagnosis

Lewy body diseases (PD/PDD/DLB):

- α -synuclein LBs/LNs.
- Dementia is common in PD¹ and can resemble DLB².
- Shared prodromal (RBD)³ and genetic features (SNCA⁴, GBA⁵).

1. Aarsland et al Arch Neurol 2003; 2. Emre et al, *Mov Do* 2017; 3. Boeve et al *Mov Do* 2001; 4. Polymeropoulos et al *Science* 1997; 5. Tsuang et al *Neurology* 2012.

Renn Medicine

From Braak et al, Neurobiol aging 2002

Lewy body diseases: Clinicopathological Diagnosis

	DLB	PDD
Essential Features	Dementia before or < 1 year after motor Parkinsonism (attention, executive, visuospatial > memory, language)	Dementia in setting of established PD (>1 year) (attention, executive, visuospatial > memory, language)
Core Features	Cognitive fluctuations Visual hallucinations Spontaneous Parkinsonism (>1 feature) REM sleep behavior disorder	
Associated/ Suggestive Features	Severe Neuroleptic sensitivity Postural Instability Repeated falls Syncope/ Transient LOC Autonomic Dysfunction Depression Hallucinations in other modalities Systematized delusions	Apathy Depression/anxiety Hallucinations Delusions Excessive daytime sleepiness
Indicative Biomarkers	Low Dopamine transporter uptake MIBG myocardial scintigraphy Sleep study confirmation REM SBD	
Penn N	Adapted From McKeith et al Neurology 2017. Emre	et al Mov DO 2007

Adapted From McKeith et al Neurology 2017, Emre et al Mov DO 2007

DLB Clinical Criteria 2017

DLB

Essential Feature	<u>Dementia before or < 1 year after motor Parkinsonism</u> (attention, executive, visuospatial > memory, language)
Core Features	Cognitive fluctuations Visual hallucinations Spontaneous Parkinsonism (>1 feature) REM sleep behavior disorder
Associated/ Suggestive Features	Severe Neuroleptic sensitivity Postural Instability Repeated falls Syncope/ Transient LOC Autonomic Dysfunction Depression Hallucinations in other modalities Systematized delusions
Indicative Biomarkers	Low Dopamine transporter uptake MIBG myocardial scintigraphy Sleep study confirmation REM SBD
	-

Penn Medicine

Adapted From McKeith et al Neurology 2017

B. FP-CIT SPECT

Pathological basis for LBD Biomarkers

From Colloby et al, Brain 2012

From Orimo et al, Acta Neuropathol 2005

From Dugger et al, Neuropathol Appl Neurobiol. 2012

🐺 Penn Medicine

Detecting Prodromal LBD

Table 1. Clinical Features That Have Been Suggested as Indicative ofEarly LB Disease.

Early symptoms (typically 5-15 years pre-dementia)

Decreased sense of smell

REM sleep behavior disorder

– Nightmares

- Crying or shouting during sleep

- Limb movements during sleep

Constipation

Dizziness on standing

Urinary incontinence

Increased saliva

Increased sweating

Intermediate symptoms

Delirium: provoked or unexplained

Late onset psychiatric disorder

- Psychosis
- Depression

Later symptoms

Cognitive impairment (nonamnestic mild cognitive impairment) Visual hallucinations, illusions, and misconceptions Parkinsonism

Abbreviations: LB, Lewy body: REM, rapid eye movement.

From McKeith et al, J GerPsych Neurol 2016

Figure I Kaplan-Meier plot of disease-free survival (i.e. free of parkinsonism or dementia) among patients with iRBD.

REM SBD has conversion rate of

~6% annually to LBD.

Motor, cognitive, autonomic-increased risk for conversion.

From Postuma et al, Brain 2019

CSF α-Synuclein

CSF α-syn LBD<HC, AD^{1,2}
Preanalytical factors (HgB)
Newer Assays
Phospho/Oligo α-syn³
RT-QuIC (sens/spec>90%)⁴⁻⁶

1. Mollenhauer et al Lancet Neurol 2011; 2. Kang et al, *JAMA Neurol* 2013; 3. Shi et al *Alz Dement 2018; 4*.Shahnawaz et al *JAMA Neurol* 2017; 5. Groveman et al *Acta Neuropathol* 2018; 6. van Rumund et al *Ann Neurol* 2019.

Penn Medicine

From Hall et al Arch Neurol 2012

From Fairfoul et al Ann Clin Trans Neurol 2016

Supportive Biomarkers for DLB

Relative preservation of MTL on structural MRI. Posterior occipital hypometabolism and cingulate island sign on FDG-PET.

AD co-pathology and LBD biomarkers

AD co-pathology has a strong influence on structural and functional imaging markers in LBD.

🞇 Penn Medicine

Overview

Biomarkers for α-synucleinopathy

Interpretation of AD biomarkers in LBD

AD co-pathology in LBD

- Multi-center cohort of autopsy-confirmed clinical LBD (PDD=115, DLB=98)
- Clinically significant AD neuropathologic change is common in LBD (~50%)
 - 40% PDD, 70% DLB
- No neuropathologic or genetic substrate can reliably differentiate PDD vs DLB.

AD co-pathology in LBD

Penn Medicine

- No Alzheimer's disease 100AD co-pathology is Low-level Alzheimer's disease Intermediate-level Alzheimer's disease associated with poor **%** – High-level Alzheimer's disease prognosis in LBD Shorter interval to dementia a 50-Shorter overall survival Specific cognitive and motor 3 25symptoms in LBD¹⁻⁴ Episodic memory, naming Years from disease onset 40 impairment Less Hallucinations/Fluctuations 1. Peavey et al Parkinsonism Relat Disord 2016 Postural instability Kraybill et al, Neurology 2005 2.
 - 3. Coughlin et al, Ann Neurol 2019
 - 4. Selikhova et al, Brain 2009

From: Irwin et al. Lancet Neurol. 2017

AD Co-pathology in LBD

- Digital Histopathology (SYN+AD=35, SYN-AD=20)
- AD co-pathology in LBD is associated with greater relative neocortical distribution of Lewy pathology.

Penn Medicine

Coughlin et al, Ann Neurol 2018

AD Tau Co-pathology in LBD

- Digital Histopathology (SYN-AD=20, AD without SYN=20)
- Tau pathology in AD> LBD.
- LBD Tau had greater relative temporal distribution than AD.
- LBD tau correlated with cognition (r=-0.4-0.6, p<0.001).

AD Tau co-pathology in LBD in vivo

PET TAU AV-1451 DLB

From Kantarci et al, Annals Neurol 2016

Renn Medicine

в DLB Entorhinal Cortex ParaHippocampal Hippocampus Cingulum Post Fusifor Frontal Sup Frontal Mid Cinaulum Mid Precuneus Temporal Mid Temporal Inf Supp Motor Area Olfactory Frontal Inf Oper Angular Temporal Pole Sup Temporal Pole Mid SupraMargina Frontal Inf Rolandic Ope Occipital Sup Temporal Sup Occipital Mid Frontal Sup Media Parietal Sup Cinaulum Ant Occipital In Precentra Frontal Sup Orb Rectus Cuneus Frontal Inf Orb Frontal Mid Orb Frontal Med Orb Lingua Postcentra Paracentral Lobule Heschl Calcarine Putamen Caudate Thalamus -Pallidum -1.0 1.5 2.0 2.5 3.0 18F-AV1451 SUVr

PET TAU AV-1451 DLB

PET TAU AV-1451 PDD

From Gomperts et al, JAMA Neurol 2016

Detecting AD co-pathology in LBD in vivo

AD CSF BM in LBD clinical cohorts reflect frequency of AD co-pathology in autopsy studies.

From Hall et al Arch Neurol 2012

Detecting AD co-pathology in LBD in vivo

CSF

In CSF t-tau/AB1-42 Ratio

From: Irwin et al, Neurol 2017

Detecting AD co-pathology in LBD in vivo

R2= 0.43**

CSF

6.00

5.00

4.50

n CSF AB

AB

SSF

CSF amyloid β 1-42 predicts cognitive decline in Parkinson disease

Neurology® 2010;75:1055-1061

A. Siderowf, MD, MSCE S.X. Xie, PhD H. Hurtig, MD D. Weintraub, MD J. Duda, MD A. Chen-Plotkin, MD L.M. Shaw, PhD V. Van Deerlin, MD, PhD J.Q. Trojanowski, MD, PhD C. Clark, MD

RESEARCH PAPER

Concomitant AD pathology affects clinical manifestation and survival in dementia with Lewy bodies

A W Lemstra,¹ M H de Beer,^{1,2} C E Teunissen,³ C Schreuder,⁴ P Scheltens,¹ W M van der Flier,⁵ S A M Sikkes⁶

Neuropathold

8² Linear - 0.435

Group SYN-AD SYN+AD

From: Irwin et al, Neurol 2017

Lemstra AW, et al. J Neurol Neurosurg Psychiatry 2017;88:113-118. doi:10.1136/jnnp-2016-313775

SUMMARY- Biomarker Stratification of LBD

Acknowledgements

PENN DIGITAL

NEUROPATHOLOGY LAB

Irwin Lab

Claire Peterson Rebecca Lobrovich Lucia Giannini Dan Ohm David Coughlin Simon Miller

PENN FTDC

Murray Grossman Corey McMillan Katya Rascovsky Lauren Massimo Tram Pham <u>All FTDC</u>

PENN TNRL

Edward Lee

PENN ADC

David Wolk Sanjeev Vaishnavi

PICSL

Paul Yushkevich Sandy Das Ranjit Ittyerah

PENN MDC

Andrew Siderowf Howard Hurtig Alice Chen-Plotkin John Duda Daniel Weintraub

<u>UW</u>

Cyrus Zabetain Debby Tsuang Dora Yearout

<u>UK</u>

Peter Nelson Gregory Jicha <u>Stanford</u> Tom Montine

PENN CNDR

John Trojanowski Virginia Lee Leslie Shaw Vivianna VanDeerlin Sharon Xie Theresa Schuck John Robinson <u>All CNDR</u>

<u>PITT</u> Oscar Lopez Julia Koffler

OHSU Jeffrey Kaye Randy Woltjer Joseph Quinn

Cleveland

Clinic James Leverenz

Studies presented were supported by grants from the National Institute on Aging (P30 AG010124-20, T32-AG000255) P01 AG017586, R01 NS44266, R01 AG15116, P01 AG32953, and P01 NS53488), National Institute for Neurological Disorders & Stroke (K23NS088341) from the National Institutes of Health, PENN IOA and grants from the Wyncote Foundation, PENN Institute for Translational Medicine and Therapeutics (ITMAT) and Brightfocus Foundation.

Penn Medicine