

Cognitive training in MCI and SCI: Impact on cognition, strategy use and virtual reality measures of real-life cognition

Sylvie Belleville, PhD

Canada Research Chair in Cognitive Neuroscience of Aging and Brain plasticity Professor, Dept. Psychology, Université de Montréal Scientific director, Research Center, Institut universitaire de gériatrie de Montréal Director, Consortium for the early Identification of Alzheimer's disease-Québec (CIMA-Q)

Memory is the top health priority for older adults and the one least addressed!

Older women's health priorities and perceptions of care delivery: results of the WOW health survey

N= 2161 older canadian women

Cara Tannenbaum, Nancy Mayo, Francine Ducharme

Can I do something to protect my brain from the effects of the disease?

There are things that you can do

- Be physically active
- Keep a well balanced heatlhy diet
- Stop smoking
- Control vascular risk factors (hypertension, diabetes, obesity)
- Sleep well
- Keep your brain active

There are things that you can do

- Be physically active
- Keep a well balanced heatlhy diet
- Stop smoking
- Control vascular risk factors (hypertension, diabetes, obesity)
- Sleep well

Be cognitively active

Participating in cognitively stimulating activities reduces by **60%** the risk of developing Alzheimer's disease

- Early life education
- Cognitively stimulating jobs
- Cognitively stimulating leisure activities
 - E.g.: cross-words puzzles, camera club, strategy games, museum, debates, learning another language or learning music...

A stimulating lifestyle allows you to build your **cognitive** reserve

How does this protect the brain?

COGNITIVELY STIMULATING ACTIVITIES across the lifespan

Can we build our cognitive reserve at an older age with cognitive training?

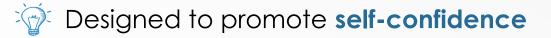
Cognitive training might also help daily life by providing strategies that one can use to better perform cognitively demanding activities.

Different types of training (Willis et Belleville, 2016)

- Therapist-based strategy training : teaching of new/more efficient ways to complete tasks (e.g.: ACTIVE, MÉMO)
- **Computerized training: Serious videogames** experimental (e.g.: Neuropeak; priority training) Or **commercial plateforms** (e.g: Brain HQ, Happy Neuron), **casual videogames** (e.g. Super Mario 64; Crazy taxi)
- Community-based activities : Volunteering or intergenerational activities (e.g.: Experience corps), new cognitively stimulating leisures – music, second language, digital photography (e.g.: Synapse; Engage)

The MEMO program

Programme d'intervention cognitive pour les aînés MEMO



Focus on **memory** : main complaint.

Includes **multi-tasking training** to improve memory in real-life distracting conditions.

Therapist-based small group (4-5 persons)

Exercices to practice use of strategy in everyday life

Gilbert, Fontaine & Belleville (2007) MEMO : A memory training program for older adults

Pay attention

Focus your attention: slow down, stop, be aware of the present (stop and find a cue to where I parked the car)

Reduce « irrelevant noise » or visual distractors (television, radio)

Try to reduce multitasking

if you have to, focus on the most important task

Take pauses when doing demanding tasks

Encode with depth

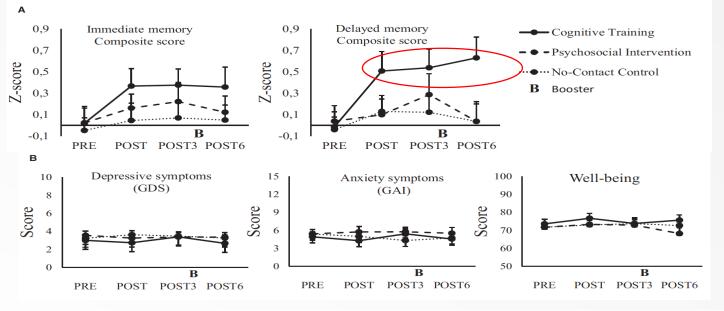
Relate to things you already know

(the first time I came to Miami!)

Group items

organize them in meaningful units

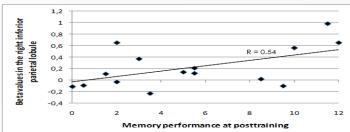
Use dual coding


Visualize, speak out loud instructions in your own words

Make funny associations

Learn, practice and use memory strategies

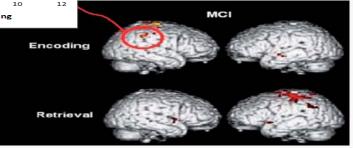
Efficacy, durability and specificity



Modified ITT analyses; Mixed linear model adjusted for sex, educations and age; Group x Time interaction; P<0.01, for delayed memory composite

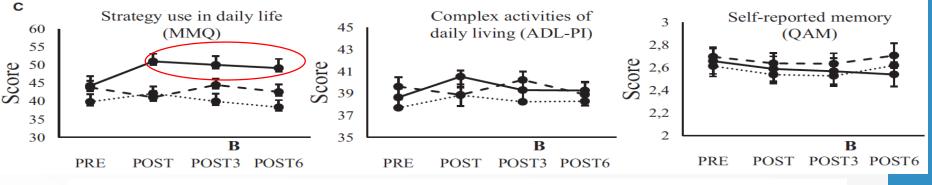
Mean Age: 72.3 ans; Mean Education: 14.6 years of age; 53.4% women

Increased brain activation in regions related to the learned strategies



doi: 10. 1093 / brain / awr037

Training-related brain plasticity in subjects at risk of developing Alzheimer's disease

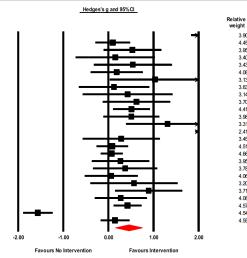

Sylvie Belleville,¹ Francis Clément,¹ Samira Mellah,¹ Brigitte Gilbert,² Francine Fontaine² and Serge Gauthier³

Brain 2011: Page 1 of 12 | 1

Post-Pre activation

Effect on transfer ? they more often use strategies ... but do not show improvement on on self-reported complex activities

Modified ITT analysis with mixed linear model adjusted for sex, age and education; Group x Time interaction; P<0.01 for strategy use (MMQ)


Strategy based cognitive training improves cognition in persons with MCI and the effect is durable

Effect on all outcome measures

Study name	Outcome	Statistics for each study						
		Hedges's g	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value
Balietti et al. (2016)	Combined	2.495	0.335	0.112	1.839	3.151	7.452	0.000
Barban et al. (2016)	Combined	0.097	0.195	0.038	-0.285	0.478	0.497	0.619
Barnes et al. (2009)	Combined	0.533	0.323	0.104	-0.101	1.166	1.648	0.099
Buschert et al. (2011)	Combined	0.154	0.445	0.198	-0.719	1.027	0.345	0.730
Carretti et al. (2013)	Combined	0.542	0.439	0.193	-0.318	1.402	1.235	0.217
Fiatarone Singh et al. (2014)	Combined	0.184	0.292	0.085	-0.388	0.756	0.631	0.528
Finn & McDonald (2011)	Combined	1.033	0.507	0.257	0.039	2.027	2.037	0.042
Finn & McDonald (2015)	Combined	0.125	0.396	0.157	-0.650	0.901	0.316	0.752
Forster et al. (2011)	Combined	0.427	0.505	0.255	-0.564	1.417	0.844	0.399
Gagnon et al. (2012)	Combined	0.623	0.378	0.143	-0.118	1.364	1.649	0.099
Giuli et al. (2016)	Combined	0.511	0.206	0.042	0.108	0.915	2.485	0.013
Greenaway et al. (2012)	Combined	0.508	0.315	0.099	-0.109	1.126	1.613	0.107
Hampstead et al. (2012)	Memory - Visual - Percent Change	1.312	0.466	0.217	0.399	2.225	2.817	0.005
Herrera et al. (2012)	Combined	3.293	0.694	0.481	1.934	4.652	4.748	0.000
Jean et al. 2010a	Combined	0.285	0.434	0.188	-0.565	1.136	0.657	0.511
Jeong et al. (2016)	Combined	0.084	0.176	0.031	-0.261	0.428	0.476	0.634
Lam et al. (2015)	Combined	0.074	0.120	0.014	-0.162	0.310	0.614	0.539
Mowszowski et al. (2014)	Combined	0.268	0.322	0.104	-0.364	0.900	0.832	0.406
Olchik et al. (2013)	Combined	0.371	0.360	0.130	-0.334	1.077	1.031	0.302
Polito et al. (2015)	Combined	0.063	0.296	0.088	-0.517	0.644	0.213	0.831
Rapp et al. (2002)	Combined	0.566	0.491	0.241	-0.396	1.528	1.154	0.249
Rojas et al. (2013)	Combined	0.894	0.376	0.142	0.156	1.631	2.375	0.018
Schmitter-Edgecombe et al. (2014)	Combined	0.275	0.291	0.085	-0.296	0.846	0.943	0.346
Tsolaki et al. (2011)	Combined	0.424	0.154	0.024	0.122	0.727	2.748	0.006
Valdes et al. (2012)	Speed - SOPT	-1.565	0.164	0.027	-1.887	-1.243	-9.528	0.000
Vidovich et al. (2015)	Combined	0.146	0.161	0.026	-0.169	0.461	0.910	0.363
		0.454	0.152	0.023	0.156	0.753	2.983	0.003

Hedges's g and 95%Cl

Other types of interventions have encouraging results as well

Neuropsychol Rev (2017) 27:440-484

https://doi.org/10.1007/s11065-017-9363-3

REVIEW

3.90 4.45

3.95 3.40 3.43 4.08

3.13 3.63 3.14 3,70

4.41 3.98 3.31 2.41 3.45 4.51 4.66 3.95 3.78 4.06 3.20 3.71 4.08 4.57 4.54 4.55

weight

6.00

6.36 7.89

3.40

6.05 8.42

6.99

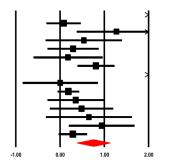
6.65 5.54

6.53

8.21

Relative The Efficacy of Cognitive Intervention in Mild Cognitive 6.87 Impairment (MCI): a Meta-Analysis of Outcomes 8.00 on Neuropsychological Measures 5.85

Dale S. Sherman^{1,2} · Justin Mauser³ · Miriam Nuno⁴ · Dean Sherzai⁵ 7.25



Lower Uppe

Hodgoe's Standard

Balietti et al. (2016)	Combined				
Barban et al. (2016)	Memory - V				
Buschert et al. (2011)	Memory - SI				
Carretti et al. (2013)	Memory - Li				
Fiatarone Singh et al. (2014)	Memory - V				
Finn & McDonald (2015)	Memory - V				
Giuli et al. (2016)	Memory - V				
Herrera et al. (2012)	Combined				
Jean et al. (2010)	Memory - C				
Lam et al. (2015)	Memory - Li				
Mowszowski et al. (2014)	Memory - Ve				
Olchik et al. (2013)	Memory - V				
Rapp et al. (2002)	Combined				
Rojas et al. (2013)	Memory - Li				
Vidovich et al. (2015)	Memory - C				

	Hedges's g	error	Variance	limit	limit	Z-Value	p-Value	
Combined	2.824	0.336	0.113	2.165	3.483	8.399	0.000	
Memory - Verbal - RAVLT (Delay)	0.083	0.195	0.038	-0.299	0.464	0.425	0.671	
Memory - Story Delay (RBANS)	1.276	0.455	0.207	0.385	2.167	2.806	0.005	
Memory - List Delay	0.538	0.437	0.191	-0.318	1.394	1.232	0.218	
Memory - Verbal - LM II (Delay)	0.296	0.292	0.085	-0.276	0.868	1.014	0.310	
Memory - Verbal - VPA-II	0.182	0.395	0.156	-0.592	0.956	0.461	0.645	
Memory - Verbal - Word Pairs	0.812	0.210	0.044	0.401	1.223	3.873	0.000	
Combined	4.644	0.811	0.658	3.053	6.234	5.723	0.000	
Memory - CVLT-II Long Delay	0.005	0.430	0.185	-0.839	0.849	0.012	0.991	
Memory - List Learning (Delayed Recall)	0.190	0.120	0.015	-0.046	0.426	1.577	0.115	
Memory - Verbal - RAVLT (Delay)	0.356	0.323	0.104	-0.276	0.989	1.105	0.269	
Memory - Verbal - RAVLT (Delay)	0.487	0.362	0.131	-0.221	1.196	1.347	0.178	
Combined	0.654	0.491	0.241	-0.309	1.617	1.331	0.183	
Memory - List Delay	0.944	0.376	0.141	0.208	1.680	2.513	0.012	
Memory - CVLT-II Long Delay	0.291	0.161	0.026	-0.024	0.606	1.811	0.070	
	0.758	0.192	0.037	0.382	1.133	3.956	0.000	

Favours No Intervention

-2.00

Favours Intervention

Virtual reality

Can be used to design a **diversity of multisensorial environments and scenarios**

Real and virtual appartement

Corriveau-Lecavalier, Ouellet & Belleville, 2017; Ouellet, Boller, Corriveau-Lecavalier, Cloutier & Belleville, 2018; Bier & Belleville, 2017, Boujut & Belleville

How to choose your healthy brain program?

Is this program validated with empirical finding? What are the claims? What are my goals? Are they realistic?

Do I like this type of activities or format?

Do not forget other components: physical activities, vascular risk factors, healthy diet

Triple activity scores (triple word scores in SCRABBLE)

Activities that stimulate more than one domain

(cognition, physical activities, social network, healthy diet)

Tai Chi; Learning tango; Classes to learn new healthy recipes; Volunteering.

Thank you for your attention and take care of your brain health

Students/post-doc

Bianca Bier

Arnaud Boujut

Émilie Ouellet

Nick Corriveau-Lecavalier

Simon Cloutier

Lab managers

Marc Cuesta

Samira Mellah

Aline Moussard

Marie-Claude Veilleux

Researchers/clinicians

Serge Gauthier Benjamin Boller Stéphane Bouchard and in-virtuo Carol Hudon

Brigitte Gilbert

Chantal Vicogliosi

Catherine Brodeur

Sébastien Grenier

GÉRIATRIE

Marie-Christine Ouellet

Engage Your Brain: GCBH Recommendations on Cognitively Stimulating Activities

> Global Council on Brain Health

Sylvie.belleville@umontreal.ca

