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Genetics Is One Piece of the AD Puzzle
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The first patient diagnosed had early onset AD

Auguste Deter - taken in 1906, shortly Alois Alzheimer (1864-1915)
before her death at age 55, during her Published case report on Auguste D in
stay at Frankfurt's City Mental Institution 1907 describing plagues and tangles
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Sporadic Early Onset AD: LEADS

* About 5% of AD has early onset defined as before age 65

* Less than 10% of these patients have mutations in known AD genes

e Longitudinal Early-onset Alzheimer’s Disease Study (LEADS) is a new
NIA sponsored consortium of 16 institutions that will begin investigating
non-familial EOAD in 2018 using cognitive testing, biomarkers,
neuroimaging and gene sequencing

* Investigators
* Liana Apostolova MD, Indiana University
* Maria Carrillo PhD, Alzheimer’s Association
* Brad Dickerson MD, Harvard University
* Gil Rabinovici MD, UCSF

http://news.medicine.iu.edu/releases/2017/10/early-onset-alzheimers.shtml
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APOE Genotype & Sporadic AD Risk
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SNP: rs429358 rs7412

Table 1 | The effect of APOE ¢4 on AD frequency and age at onset’

APOE ¢4
homozygous

Characteristic APOE =4 APOE =4

noncarrier heterozygous

AD frequency (%)

Mean age of clinical onset (yvears)

Abbreviations: AD, Alzheimer disease, APUE &4, ¢4 allele of the apolipoprotein E gene,
Liu et al, Nature Reviews Neurology, 9:106-118, Feb 2013




Alzheimer’s Disease Neuroimaging Initiative (ADNI)

LOAD Biomarkers: Temporal ordering and time-dependent roles
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APOE ¢4 Status and Early Stage Amyloid Deposition on PET
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APOE ¢4 Status: Early Stage Atrophy and Glucose Metabolism
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IGAP Meta-Analysis: Now a “Top 20+” LOAD Genes (2013)

Lambert et al Nature Genetics (2013)* LETTERS

nature

genetics Largest AD GWAS

Meta-analysis of 74,046 individuals identifies 11 new
susceptibility loci for Alzheimer’s disease

Eleven susceptibility loci for late-onset Alzheimer’s disease
(LOAD) were identified by previous studies; however, a large

portion of the genetic risk for this disease remains unexplained.

We conducted a large, two-stage meta-analysis of genome-
wide association studies (GWAS) in individuals of European
ancestry. In stage 1, we used genotyped and imputed data
(7,055,881 SNPs) to perform meta-analysis on 4 previously
published GWAS data sets consisting of 17,008 Alzheimer’s
disease cases and 37,154 controls. In stage 2, 11,632 SNPs
were genotyped and tested for association in an independent
set of 8,572 Alzheimer’s disease cases and 11,312 controls.
In addition to the APOL locus (encoding apolipoprotein E),
19 loci reached genome-wide significance (P < 5 x 107%) in the
combined stage 1 and stage 2 analysis, of which 11 are newly
associated with Alzheimer’s disease.

“In addition to the APOE
locus, 14 genomic regions
had associations that
reached genome-wide
significance. 9 had been
previously identified by GWAS
as genetic susceptibility
factors, and 5 (HLA-DRBb5-
HLA-DRB1, PTK2B, SORL1,
SLC24A4-RIN3 and DSG2)
represent newly associated
loci.”



IGAP Meta-Analysis: Top 20 AD Genes
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Genetic Risk for AD: Pathogenic Mechanisms
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Next Generation Sequencing

Enables search for novel rare variants

Human Genome: 3 Billion Bases

* [llumina HiSeq Platform
 Whole Exome Sequencing (WES)
* Whole Genome Sequencing (WGS)
* RNA Sequencing (RNA-seq / miRNA-seq)

The NEW ENGLAND JOURNAL of MEDICINE

CORRESPONDENCE

TREM2 and Neurodegenerative Disease

LETTER

doi:10.1038/nature12825

Rare coding variants in the phospholipase D3 gene
confer risk for Alzheimer’s disease
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Polygenic Scores: Combined Effects of Genes
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Gene x Environment Interaction: Epigenetics
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Working Toward a Systems Biology of AD

(Transcriptome™}
L R A

RNA-'éequéntce
\and expression _/

/” Genome***

DNA sequence
\._and variation

/~ Exposome** /
¥

style, diet, drug,
age

*: ADNI-1
** ADNI-GO/2

Image sources
* upload.wikimedia.org.
+ www uphs.upenn edu

llll Neuroscience Center
HEALTH

f Proteome*\ /Metabolome*™

Protein expression, s

structure, and Metabolite /
\ function J \_ enzyme profile /

/~ Epigenome!

DNA methylation

1 i

[

. Molecular Networks/Pathways

Farrway

Py 107

Perturbed biochemical networks/pathways

Jv

' Q Structural:and

Environment, life ‘

Healthy vs Disordered Bramsi

AD Brain Healthy Brain AD Brain

Healthy Brain

PiB PET

Function Connectivity

Structure

Systems Biology Approach

Saykin et al Alzheimer’s & Dementia 11 (2015) 792-814

and histone
modification

/" Interactome' "\

Interaction (e.g.,
gene-gene, gene-
\_protein)

/Brain structure\

& function™-**

functional brain
imaging

/Connectome*™\

Anatomical and
functional brain

\_ connectivity _/

INDIANA UNIVERSITY
SCHOOL OF MEDICINE



Path from genetic signal to targeted therapeutics
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pathway
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THE PRECISION MEDICINE INITIATIVE

Toward a Precision Medicine of AD
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Molecular Validation & Therapeutics: New Models

Model Organism Development and Evaluation for Late-onset
Alzheimer’s Disease (MODEL-AD)

Contact PI: Bruce Lamb

ADNI contributes target nominations & characterization
MODEL-AD is creating organisms based on ADNI reports

4

INDIANA UNIVERSITY

\/ox The Jackson ' S a e
Laboratory BIONETWORKS

Leading the search
for tomorrow’s cures

Website: nttps://Model-AD.org

Contact: ModelAD@iupui.edu
Data: https://iwww.synapse.org/# Synapse:syn2580853/wiki/409840
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Conclusions

* The genetic architecture of AD differs for familial early onset AD and LOAD
* For LOAD we have gone from only APOE to over 25 promising candidate genes
* Next generation sequencing is identifying novel rare variants associated with AD

* Major pathways implicated by genome-wide findings include brain lipids and
cholesterol processing and the innate immune system

* Genetic variation can be studied in case/control or biomarker phenotype designs
* Polygenic scores combining gene effects are promising for risk prediction

* The systems biology of AD is a work in proO%ress but will be important for
understanding and treating this complex disease

* Longitudinal studies of epigenetic changes such as methylation are needed

* An important goal is to understand heterogeneity by inteirating genetics,—omics and
imaging/biomarker profiles = precision medicine of AD & related disorders

* Target discovery and validation, informing model system development and
assessment of therapeutic strategies are all important directions



