Network-Based Spread in AD: Evidence from Multi-Modal Human Neuroimaging

Gil Rabinovici, M.D. Associate Professor of Neurology UCSF Memory & Aging Center

15th Annual Mt. Sinai MCI Symposium January 14, 2017

Disclosures

<u>Research support</u>

- Avid Radiopharmaceuticals/Eli Lilly, GE Healthcare, Piramal Imaging
- Consulting/honoraria

– Eisai, Genentech, Lundbeck, Merck, Putnam, Roche

 Presentation includes the amyloid tracer
[¹¹C]PIB and tau tracer [¹⁸F]AV1451 which are not FDA-approved for clinical use

Default Mode Network (DMN) Overlaps with AD

Raichle et al., PNAS 2001 Buckner et al., J Neurosci 2005

DMN Connectivity Distinguishes AD from NC

A Controls

t-score

AD

-2

+46

+34

-26

Greicius et al., PNAS 2004

Reduced DMN Connectivity in Aβ+ Controls

Hedden et al., J Neurosci 2009

Functional Connectivity MRI of the "Resting State"

r = 0.80

Slide courtesy of Michael Greicius

fcMRI Identifies Functional Networks

Shirer et al., Cereb Cortex 2012

Neurodegenerative Diseases Target Large Scale Brain Networks

Seeley et al., Neuron 2009

Can Network Involvement Explain Heterogeneity in AD?

Migliaccio et al., Neurology 2009

Common and Variant-Specific AD Regions

Regions commonly atrophied in AD variants

Left precuneus (MNI -2 -60 44)

Right posterior cingulate cortex (PCC) (MNI -2 -33 28)

Left inferior parietal (MNI -51 -58 10)

Regions specifically atrophied in AD variants

AD-MEM/EXEC Right middle frontal gyrus (MNI 40 42 30)

AD-LANG Left superior temporal sulcus (MNI -56 -40 1)

AD-VISUAL Right middle occipital gyrus (MNI 39 -88 10)

Lehmann et al., PNAS 2013

AD Variants Target Distinct Brain Networks and Converge in DMN

EO-AD (executive) Executive control network

LPA (language) Language network

PCA (visuospatial) Higher visual network

All AD Variants Default mode network

Lehmann et al., PNAS 2013

Amyloid Patterns Do Not Explain Heterogeneity

EOAD > controls

lvPPA > controls

PCA > controls

2

6

Lehmann et al., Brain 2013

Cortical Hubs Accumulate Aß

Degree connectivity (Controls)

Buckner et al., J Neurosci 2009

Relationships Between Tau Patterns in AD and Normal Brain Connectivity

Generated covariance maps from seed regions

AD01

AD02

AD36

AD....

Tau Covariance Patterns Mirror **Functional Networks**

A. Middle Occipital Cortex (r)

C. Middle Frontal Gyrus (r)

B. Superior Temporal Gyrus (I)

D. Posterior Cingulate Cortex (I)

Ossenkoppele et al., in prep

[18F]AV1451 Covariance

Take Home Points

- fcMRI supports the concept of "network-based" neurodegeneration in AD
 - Clinical features represent failure of specific networks
 - DMN implicated across AD phenotypes
- Aβ/Tau associated with distinct network features
 - Regions of high connectivity ("hubs") susceptible to $A\beta$
 - Tau may spread from epicenters via network connections, driving neurodegeneration
- Multi-modal neuroimaging powerful tool for testing disease models in vivo

"Sick Brain"

"Healthy Brain"

Naomi Rabinovici, age 5.5, Sept 2013

UCSF-MAC

Bruce Miller Manja Lehmann **Rik Ossenkoppele** Nagehan Ayakta Alexandre Bejanin Averill Cantwell Leonardo laccarino Andreas Lazaris Mariella Lauriola Ashley Mensing **Daniel Schonhaut Gautam Tammewar Adam Boxer** Lea Grinberg Marilu Gorno-Tempini Anna Karydas Lisa Kritikos **Robin Ketelle Joel Kramer** Zach Miller **Howie Rosen Miguel Santos** Salvatore Spina **Bill Seeley**

UC Berkeley/LBNL

Bill Jagust Jim O'Neill Kris Norton Suzanne Baker Mustafa Janabi Henry Schwimmer Jake Vogel

Collaborators

Liana Apostolova Giovanni Coppola **Brad Dickerson Nupur Ghoshal Mike Greicius** Milos Ikonomovic Cliff Jack William Klunk Irene Litvan **Chet Mathis Melissa Murray Susan Resnick Chris Rowe Philip Scheltens** Sang Won Seo **Victor Villemagne**

Acknowledgments

<u>Funding</u>

NIA R01-AG045611, P01-AG1972403, P50-AG023501 NINDS U54NS092089 Alzheimer's Association Tau Consortium AFTD Avid Radiopharmaceuticals American College of Radiology Michael J. Fox Foundation French Foundation

Extra Slides

PIB Covaraince Patterns are Non-Specific

AV1451 covariance maps (p<0.05 FWE)

fMRI connectivity maps (p<0.01 FDR)

PIB covariance maps (p<0.05 FWE)

Visual Networks in PCA

Ventral visual stream

Dorsal visual stream

0.35	fractional anisotropy	0.45

PCA-6

PCA-2

Migliaccio, Agosta et al., Neurobiol Aging 2012

fcMRI versus Cognition in IvPPA

Whitwell et al., Neurobiol Aging 2015

Imaging Prodromal PCA

Chan et al., Neurocase 2015

MRI Atrophy (VBM) 395 AD subjects from UCSF/VUMC 44% CDR 0.5 / 56% CDR 1.0

CDR 0.5

Ossenkoppele et al., HBM 2015

Tau PET Patterns Correlate with AD Phenotype

Covaried for age, p(FWE)<0.05 Ossenkoppele et al., Brain 2016