"The added value of the IWG-2 diagnostic criteria for Alzheimer's' disease"

Miami, January 2016

Bruno Dubois

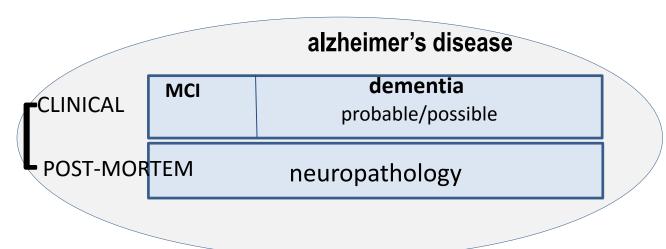
Head of the Dementia Research Center (IMMA)

Director of INSERM Research Unit (ICM)

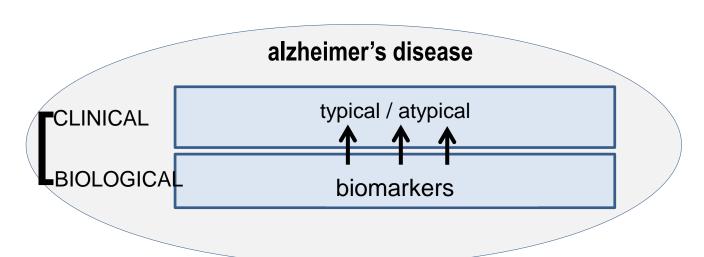
Salpêtrière Hospital – University Paris 6

IWG-1 criteria (2007-2010)

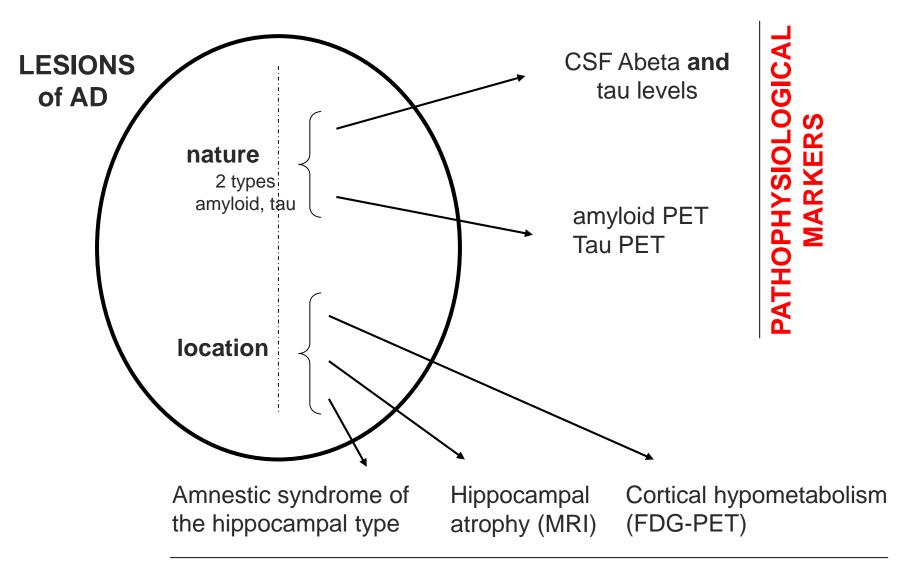
First introduction of different AD clinical stages ☐ prodromal stage ☐ dementia stage
First introduction of different AD preclinical states ☐ asymptomatic at risk (biomarker positive) ☐ presymptomatic (mutation carriers)
First introduction of different forms of AD ☐ typical ☐ atypical


One disease: one set of criteria

AD: a clinico-biological entity


The conceptual shift

1984
NINCDS-ADRDA


clinical pathological entity

The different biomarkers of AD

TOPOGRAPHICAL MARKERS

The 2 types of biomarkers (LN, 2014)

Diagnostic markers

- Pathophysiological markers
- Reflect in-vivo pathology (amyloid and tau changes)
- Are present at all stages of the disease
- Observable even in the asymptomatic state
- Might not be correlated with clinical severity
- Indicated for inclusion in protocols of clinical trials

Progression markers

- Topographical or downstream markers
- Poor disease specificity
- Indicate clinical severity (staging marker)
- Might not be present in early stages
- Quantify time to disease milestones
- Indicated for disease progression

IWG-2 criteria for typical AD, at any stage

CLINICO - BIOLOGICAL ENTITY

- ☐ Amnestic syndrome of the hippocampal type
- ☐ Isolated or associated with other cognitive or behavioral changes

• CSF (low β1–42 and high T or P-tau)

OR

• Amyloid PET (+)

2011

(3) NIA/AD diagnostic Criteria

The NIA/AA criteria acknowledge that:

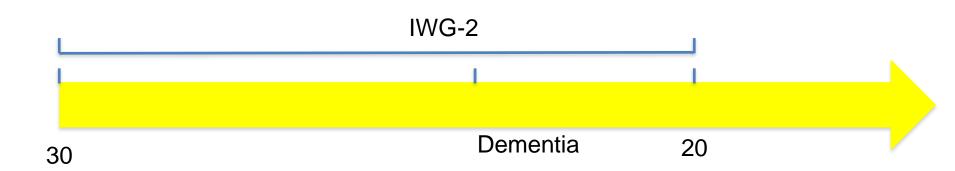
- brain changes can occur long before dementia symptoms
- disease biomarkers might be useful for the diagnosis

3 recognized stages with 3 different diagnostic algorithms

- AD dementia stage (10 categories)
- MCI stage (4 categories)
- preclinical stage (3 categories)

2 types of MCI criteria:

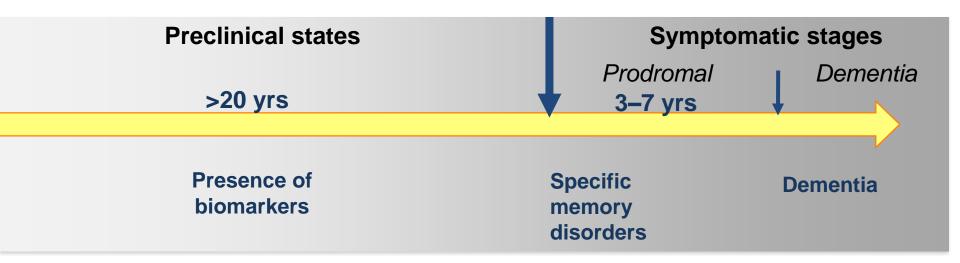
- for clinical setting
- for research purposes that are based on the use of biomarkers:


Cognition	Likelihood of AD	Biomarker Evidence
MCI	High likelihood	(+) amyloid-β biomarker AND (+) neuronal injury biomarker*
MCI	Intermediate likelihood	(+) amyloid-β biomarker OR (+) neuronal injury biomarker*
MCI	Uninformative situation	Biomarkers fall in ambiguous ranges, conflict, not obtained
MCI	Unlikely due to AD	Demonstrated absence of AD-type molecular marker and possible presence of marker suggestive of non-AD disorder

Prodromal versus MCI due to AD

Characteristics	IWG-2	NIA/AA
Pathophysiological markers only	YES	NO
At least, amyloid marker necessary	YES	NO
Specific clinical phenotype required	YES	NO
Integration within a continuum	YES	NO
Different levels of likelihood	NO	YES
Only clinical	NO	YES

« Early AD »: the right target


- This includes 'Prodromal + Mild AD dementia'
- IWG-2 criteria with MMS ≥ 20

Advantages:

- Focus on early stage of AD
- One disease = One set of criteria
- Possibility for a secondary stratification

The preclinical states of AD

Who are they?

Presymptomatic AD

= with autosomal dominant monogenic AD mutation: they will develop AD

Asymptomatic at risk for AD (AR-AD)

= with a positive pathological marker (brain or CSF): they will or will not develop AD

The « IWG-2 criteria »

A simplified algorithm is proposed:

In any condition and at any stage of the disease, the diagnosis of AD relies on the presence of a pathophysiological marker.

Typical

• Amnestic syndrome of the Hipp. type

Atypical

- Posterior cortical atrophy
- Logopenic variant
- Frontal variant

Asymptomatic at risk

No AD phenotype (typical or atypical)

Presymptomatic (AD mutation)

No AD phenotype (typical or atypical)

• CSF (low β1–42 and high T or P-tau)

OR

• Amyloid PET (high retention of tracer)

IWG-2 criteria for asymptomatic at risk

Absence of specific clinical phenotype of AD

- (both are required):
- □ Absence of amnestic syndrome of the hippocampal type
- ☐ Absence of any clinical phenotype of atypical AD

- CSF (low β1–42 and high T or P-tau)
 OR
- Amyloid PET (+)

Added-value of the IWG-2 criteria

- They focus on the entire continuum of AD including the preclinical states;
- They utilize a single diagnostic framework for the entire range of clinical severity
- They integrate **pathophysiological** biomarkers into all phases of the diagnostic approach to improve on the diagnostic specificity
- AD diagnosis is now based at least on the presence of brain amyloidosis
- They integrate causative mutations into diagnosis
- They are simple to apply
- They can be used for inclusion of patients with « early AD », an important target for clinical trials

Update: The new lexicon (1)

(Dubois et al, Lancet Neurology 2010)

AD: starts with the first specific symptoms and encompasses both the prodromal and dementia phases

AD dementia: phase of AD with an impact on ADL

Prodromal AD: the early symptomatic, predementia phase of AD

Typical AD: common clinical phenotype of AD, characterized by an early amnestic syndrome of the hippocampal type

Atypical AD: less common but well characterized clinical phenotypes: logopenic aphasia, posterior cortical atrophy, frontal variant of AD. The diagnosis of AD needs in vivo evidence of pathophysiological markers

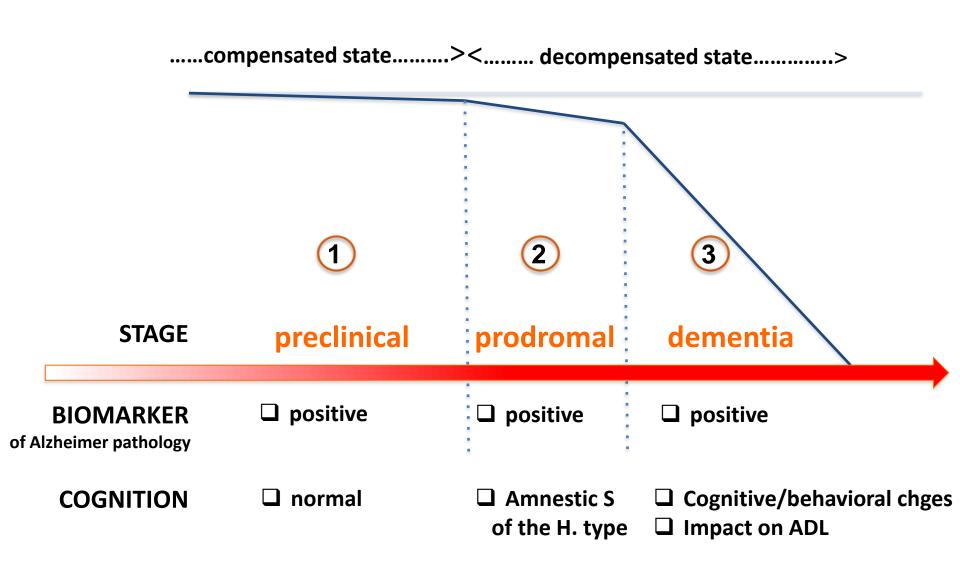
Mixed AD: patients who fulfill the criteria for AD with clinical and biomarkers evidence of other co-morbid disorders

Update: The new lexicon (2)

Preclinical stages of AD

Asymptomatic at risk: cognitively normal individuals with in vivo pathophysiological biomarkers of AD Presymptomatic AD: cognitively normal individuals with a proven autosomal dominant mutation

Alzheimer's pathology: neurobiological changes responsible for AD **Pathophysiological markers**: in vivo biological changes that reflect the underlying AD pathology (CSF Abeta and tau; PET-amyloid).


They are markers of diagnosis, more targeted at identifying AD. Topographical biomarkers: downstream markers of neurodegeneration: can be structural (atrophy/MRI) or metabolic (hypometabolism/FDG-PET).

They are markers of progression, more targeted at assessing changes over time and predicting outcomes.

What's next?

The preclinical states of AD

AD = a continuum with different stages

Stage 1

Asymptomatic amyloidosis

- -High PET amyloid tracer retention
- -Low CSF $A\beta_{1-42}$

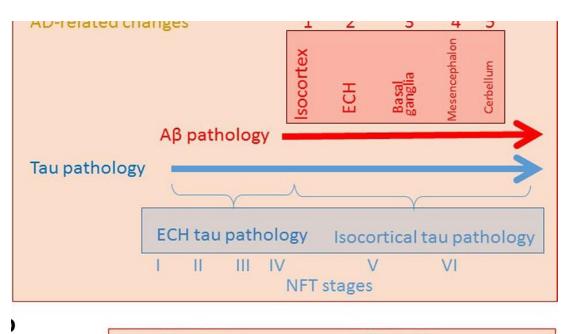
Stage 2

Amyloidosis + Neurodegeneration

- -Neuronal dysfunction on FDG-PET/fMRI
- -High CSF tau/p-tau
- -Cortical thinning/Hippocampal atrophy on sMRI

Stage 3

Amyloidosis + Neurodegeneration + Subtle Cognitive Decline


- -Evidence of subtle change from baseline level of cognition
- -Poor performance on more challenging cognitive tests
- -Does not yet meet criteria for MCI

MCI → AD dementia

PART is part of Alzheimer disease

Charles Duyckaerts · Heiko Braak · Jean-Pierre Brion · Luc Buée · Kelly Del Tredici · Michel Goedert · Glenda Halliday · Manuela Neumann · Maria Grazia Spillantini · Markus Tolnay · Toshiki Uchihara

« Entorhinal-hippocampal tau pathology is an invariant feature of AD and is always associated with its development ».

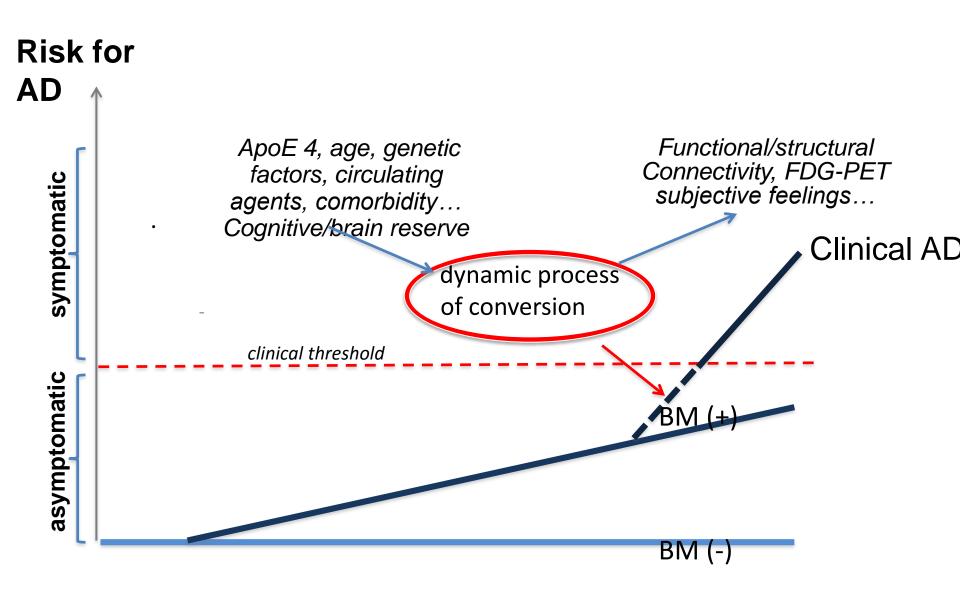


Fig. 1 Relationship between the development of tau pathology and $A\beta$ deposition. **a** Tau pathology in the entorhinal cortex and hippocampus (ECH) belongs to the AD continuum. It is complemented over time by $A\beta$ deposition that occurs in an ordered manner

Unresolved issues about preclinical states of AR-AD

- 1) Will they all convert to AD? Ethical issues:
- What should we <u>disclose</u> about their status and their risk?
- Can we treat someone against a disease that he/she will never develop?
- 2) When will they convert to AD? Therapeutic issues:
- Duration of the study?
- Factors to be controlled: age? APOE status? amyloid burden? cognitive reserve? education? preventive genetic/epigenetic factors?...
 - to better know the natural history of AD identify predictive markers of a further conversion identify the risk/preventive factors of a clinical disease

The risk for AD - Hypothetical model

We gratefully acknowledge the IWG participants

 H Feldman, C Jacova, H Hampel, JL Molinuevo, K Blennow, ST DeKosky, S Gauthier, D Selkoe, R Bateman, S Cappa, S Crutch, S Engelborghs, GB Frisoni, NC Fox, D Galasko, M-O Habert, GA Jicha, A Nordberg, F Pasquier, G Rabinovici, P Robert, C Rowe, S Salloway, M Sarazin, S Epelbaum, L de Souza, B Vellas, PJ Visser, L Schneider, Y Stern, P Scheltens, JL Cummings