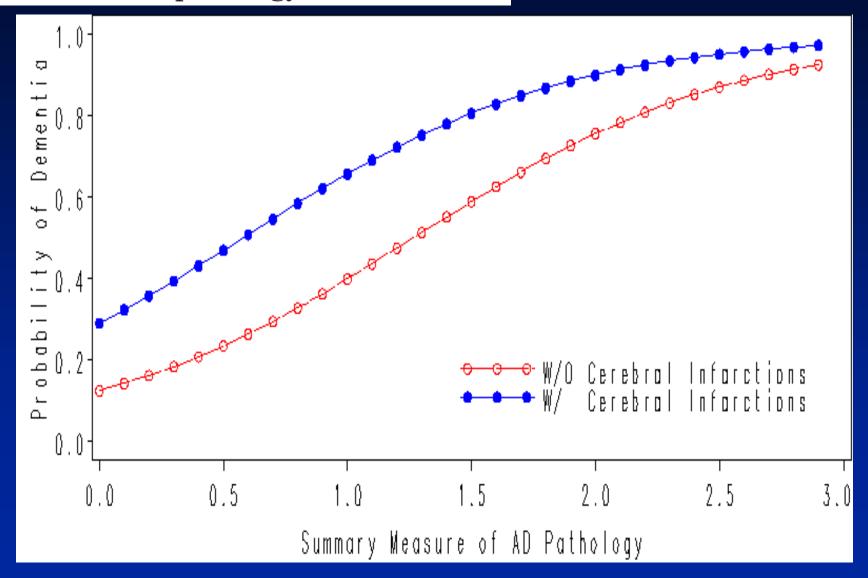
Vascular risk factors impact cognition independent of PIB PET and MRI measures of AD and vascular brain injury

C. DeCarli, D. Mungas, O. Carmichael, S. Villeneuve, E. Fletcher, D. Harvey, L. Beckett, B. Singh, W. Jagust, B. Reed

Department of Neurology and Center for Neuroscience at UC Davis and the Helen Wills Neuroscience Institute at UC Berkeley

IDeA Lab


Disclosures

P30 AG10129, P01 AG12435, R01 AG010220, R01 AG 031563 and R01 AG021028

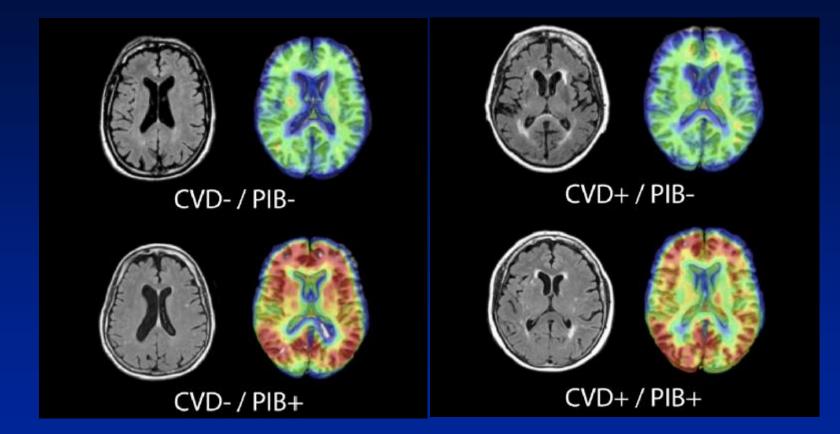
Consultant to Novartis

Cerebral infarctions and the likelihood of dementia from Alzheimer disease pathology

Schneider JA, et al. *Neurology* 2004;62:1148-1155

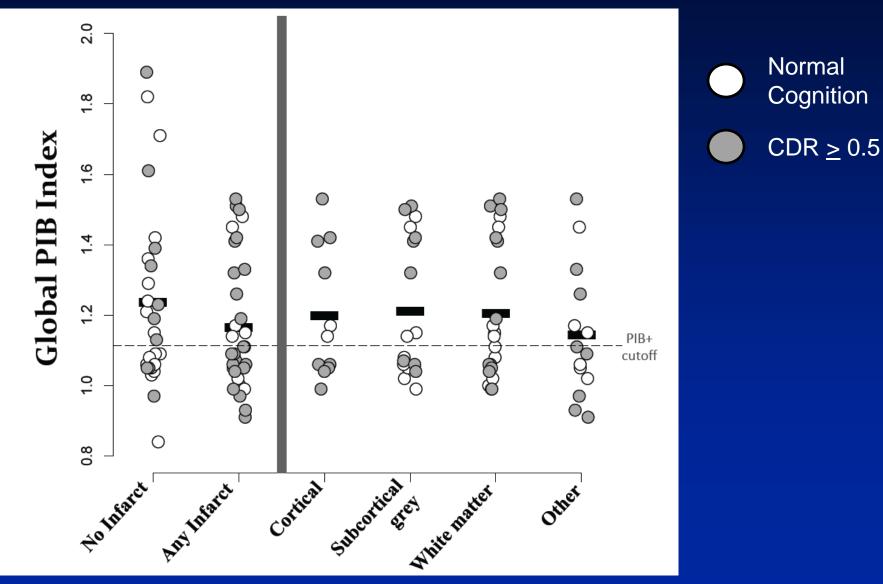
Neurobiology of Aging 33 (2012) 1006.e25-1006.e36

NEUROBIOLOGY OF AGING

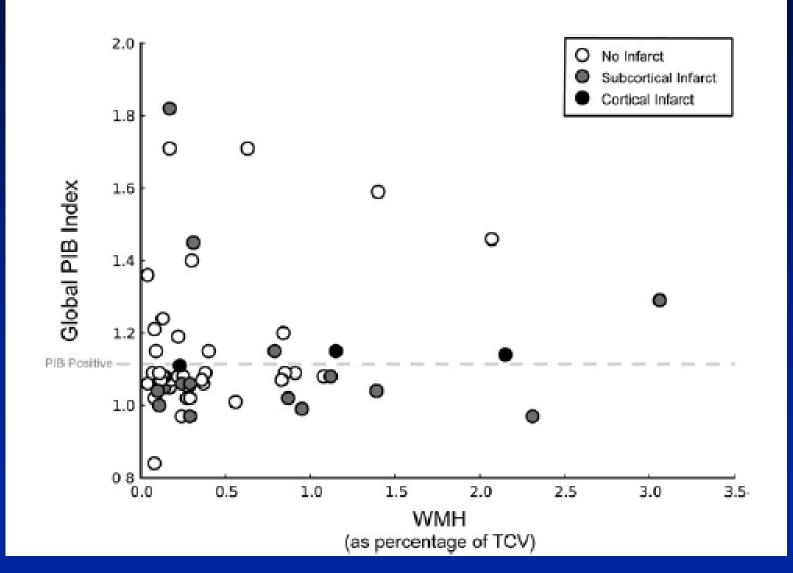

www.elsevier.com/locate/neuaging

Cerebrovascular disease, beta-amyloid, and cognition in aging

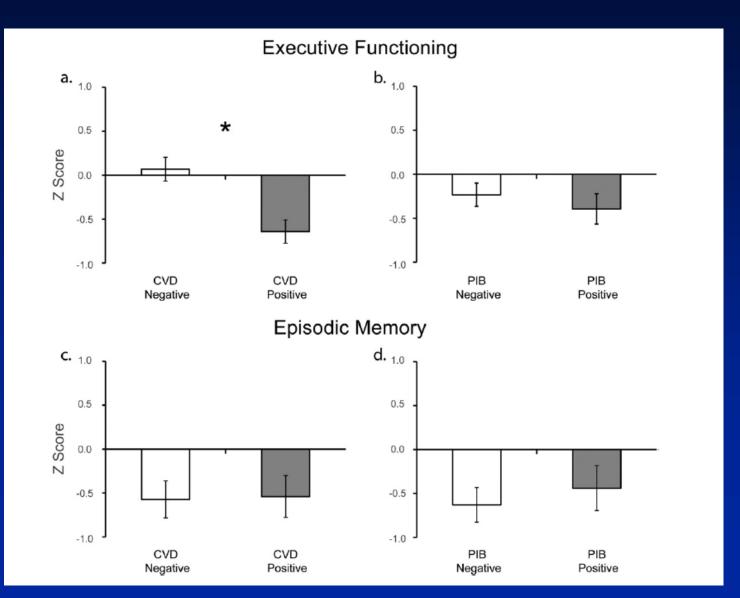
Natalie L. Marchant^{a,b,*}, Bruce R. Reed^c, Charles S. DeCarli^c, Cindee M. Madison^a, Michael W. Weiner^d, Helena C. Chui^e, William J. Jagust^{a,b}


	CVD- (n = 27)	CVD+ (n = 27)	Total $(n = 54)$
			· · · · ·
Age	76.2 ± 6.4	77.8 ± 7	77 ± 6.7
Sex (M/F)	14/13	18/9	32/22
Education	16.2 ± 2.6	14.8 ± 2.9	15.5 ± 2.8
APOE ε4 % ^a	23.1	28	25.5
GDS	4 ± 3.7	2.4 ± 2.2	3.2 ± 3.2
MMSE	29.1 ± 1.2	$28.3 \pm 1.2^*$	28.7 ± 1.3
Composite vascular risk	0.27 ± 0.27	$0.44 \pm 0.27*$	0.36 ± 0.27
WMH percentage of TCV	0.19 ± 0.11	$0.92 \pm 0.75^{**}$	0.56 ± 0.65
Infarct type	0	1/14/2	1/14/2
(cortical/subcortical/			
both)			
PIB -/+	18/9	15/12	33/21

Group Classification



CVD+ defined as extensive WMH or infarction or both on MRI


PiB Retention in Relation to Infarction

Association Between WMH volume and PiB Index

Association with Cognition

The Aging Brain and Cognition

Contribution of Vascular Injury and $A\beta$ to Mild Cognitive Dysfunction

Natalie L. Marchant, PhD; Bruce R. Reed, PhD; Nerses Sanossian, MD; Cindee M. Madison, MA; Stephen Kriger, BS; Roxana Dhada, BA; Wendy J. Mack, PhD; Charles DeCarli, MD; Michael W. Weiner, MD; Dan M. Mungas, PhD; Helena C. Chui, MD; William J. Jagust, MD

> JAMA Neurol. Published online February 11, 2013. doi:10.1001/2013.jamaneurol.405

	PiB-	PiB+			
	(n = 32)	(n = 29)	t	χ^2	P Value
Age, mean (SD), y	76.6 (7.5)	79 (6.3)	$t_{59} = 1.4$.17
Male sex	19 (59)	24 (83)		$\chi_1^2 = 4.00$.046
Educational level, mean (SD), y	13.8 (2.9)	14.1 (2.5)	$t_{59} = 0.5$.64
APOE ε4 allele ^b	3 (12)	10 (40)		$\chi_1^2 = 5.09$.02
MMSE score, mean (SD)	28 (2.2)	27.4 (2.3)	$t_{59} = 1.0$.02 .32
GDS score, mean (SD)	1.5 (1.7)	2.4 (2.6)	$t_{57} = 1.5$.14
Infarct+	20 (62)	14 (48)		$\chi_1^2 = 1.25$.26
$CDR \ge 0.5$	15 (47)	16 (55)		$\chi_1^2 = 0.42$.52

Impact of Vascular disease on Cognition

Episodic Memory

	Demographics			Infarct					WMH	Αβ
	Age	Sex (Male)	Education	Cortical	Subcortical grey	White matter	Other	Number (0, 1, >1)	WMH volume	Global PIB Index
Stage 1	107	.064	.245							
Stage 2				06	29*	06	02	19	.02	18
Stage 3	24	02	.16		34*				.19	08

Executive Function

	Demographics		Infarct					WMH	Αβ	
	Age	Sex	Education	Cortical	Subcortical	White	Other	Number	WMH	Global
	nge	(Male)	Education	Contical	grey	matter	Other	(0, 1, >1)	volume	PIB Index
Stage 1	01	.08	.51***							
Stage 2				47***	33*	17	2	14	21	15
Stage 3	08	19	.38**	54**					.05	04

Coronary Artery Disease Is Associated with Cognitive Decline Independent of Changes on Magnetic Resonance Imaging in Cognitively Normal Elderly Adults

Ling Zheng, MBBS, PhD,^{*} Wendy J. Mack, PhD,[†] Helena C. Chui, MD,^{*} Lara Heflin, PhD,[‡] Dan Mungas, PhD,[§] Bruce Reed, PhD,[§] Charles DeCarli, MD,[§] Michael W. Weiner, MD,^{||#} and Joel H. Kramer, PsyD^{**}

JAGS 60:499–504, 2012

Model	Independent Variable	Global Cognition*	Verbal Memory*	Executive Function*
1	CAD	-2.56 (0.88) .004	-2.55 (1.12) .02	-1.49 (0.67) .03
	Baseline WMH	-0.17 (0.39) .67	0.06 (0.49) .9	0.2 (0.29) .49
	Change in WMH	-1.91 (0.86) .03	-2.18 (1.1) .049	-2.56 (0.65) <.001
2	CAD	-2.55 (0.85) .003	-2.38 (1.13) .04	-1.35 (0.67) .046
	Baseline SBI	-0.14 (0.23) .56	-0.24 (0.3) .42	-0.33 (0.18) .07
	Change in SBI	-0.39 (0.17) .02	-0.23 (0.22) .28	-0.31 (0.13) .02
3	CAD	-2.53 (0.86) .004	-2.47 (1.06) .02	-1.41 (0.66) .03
	Baseline HV	0.09 (0.19) .63	0.66 (0.23) .004	0.17 (0.15) .24
	Change in HV	0.74 (0.27) .007	0.57 (0.33) .08	0.72 (0.21) .001
4	CAD	-2.43 (0.9) .007	-2.23 (1.12) .048	-1.27 (0.71) .08
	Baseline CGM	0.06 (0.15) .68	0.14 (0.18) .42	0.03 (0.11) .82
	Change in CGM	0.09 (0.1) .34	0.17 (0.12) .14	0.08 (0.07) .27
5	CAD	-2.69 (0.85) .002	-2.52 (1.06) .02	-1.51 (0.65) .02
	Change in WMH	-1.27 (0.87) .15	-1.63 (1.09) .14	-2.03 (0.66) .002
	Change in SBI	-0.24 (0.16) .14		-0.07 (0.12) .56
	Baseline HV		0.68 (0.23) .004	_
	Change in HV	0.53 (0.28) .06	0.45 (0.34) .19	0.49 (0.21) .02

Summary

Vascular risk factors are common among older individuals

In a high vascular risk group

 Vascular brain injury is associated with impaired cognition

Impact due to extent of cerebral amyloid less prominent

 Vascular risk factors exert effect on cognition when adjusting for vascular and degenerative brain injury

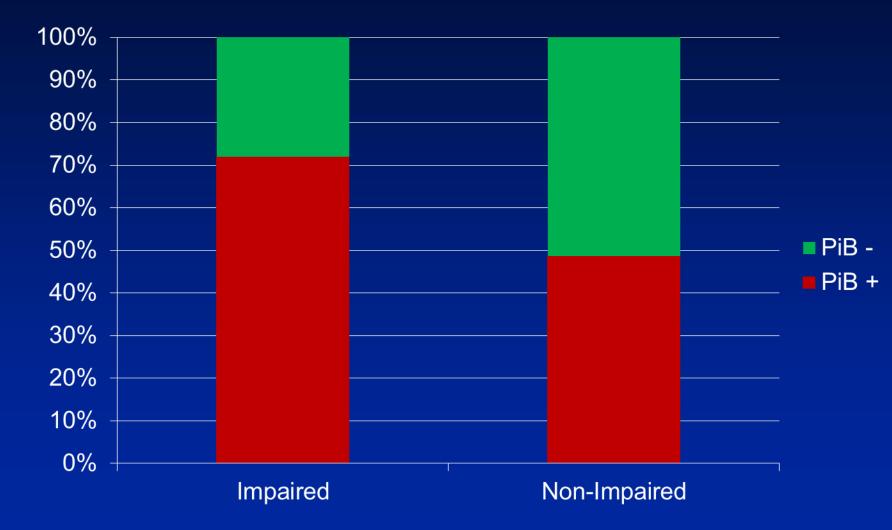
Aims

Evaluate effect of vascular burden on change in cognition in a diverse, community based study

- Adjusting for:
 - >Amyloid Retention
 - Structural MRI

Methods

- Cognition measured with Spanish English Neuropsychological Assessment Scale (SENAS)
 - Memory
 - Executive
- MRI quantification
 - Total brain volume
 - Hippocampal volume
 - WMH
- Amyloid Imaging
 PiB DVR


Vascular Burden

Risk Factors Hypertension Diabetes • High Cholesterol Vascular Injury Coronary Artery Disease Stroke /TIA

Study Cohort

	Normal	MCI	Demented
	(N=37)	(N=25)	(N=3)
Years of Observation	5.7 <u>+</u> 3.0	3.0 <u>+</u> 2.7	4.4 <u>+</u> 2.8
Age	72 <u>+</u> 7	75 <u>+</u> 7	80 <u>+</u> 5
Gender (%F)	51%	44%	33%
Ethnicity (% Caucasian)	51%	80%	100%
Education (years)	15 <u>+</u> 4	16 <u>+</u> 2	17 <u>+</u> 4
Vascular Burden (number)	1.7 <u>+</u> 1.2	1.7 <u>+</u> 1.2	1.3 <u>+</u> 1.2
Episodic Memory (SD units)	0.30 <u>+</u> 0.81	-0.96 <u>+</u> 0.54	-1.24 <u>+</u> 0.24
Executive Function (SD units)	0.13 <u>+</u> 0.57	-0.07 <u>+</u> 0.43	-0.51 <u>+</u> 0.45
Brain Volume (%TCV)	77.8 <u>+</u> 3.5	76.1 <u>+</u> 5.0	72.4 <u>+</u> 1.8
Hippocampus (% TCV)	0.30 <u>+</u> 0.05	0.23 <u>+</u> 0.06	0.19 <u>+</u> 0.04
WMH (log %TCV)	-5.6 <u>+</u> 1.2	-5.4 <u>+</u> 1.0	-5.6 <u>+</u> 0.73
Global PiB Index	1.19 <u>+</u> 0.22	1.41 <u>+</u> 0.36	1.75 <u>+</u> 0.17

Amyloid Positivity by Impairment Category

Results

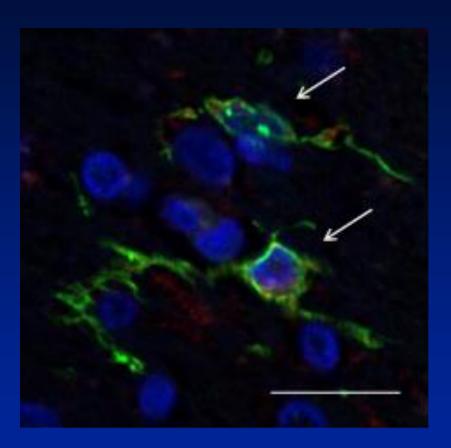
	Ep	isodic Mem	ory	Exe	cutive Funct	ion
	Estimate	Std Error	P-Value	Estimate	Std Error	P-Value
MODEL 1						
Time	-0.09	0.20	NS	-0.067	0.022	0.007*
Baseline Age	-0.01	0.014	NS	-0.01	0.01	NS
Education	0.06	0.03	0.04*	0.08	0.02	<.0001*
Impaired	-0.46	0.35	0.0005*	-0.10	0.09	NS
Impaired x Time	0.01	0.081	NS	-0.024	0.018	NS
MODEL 2						
Global PiB DVR	-0.41	0.35	NS	0.18	0.24	NS
Global PiB DVR x Time	-0.21	0.07	<0.008*	-0.12	0.05	0.03*
MODEL 3						
Hippocampal Volume	315	138	0.03*	179	95	NS
Hippocampal Volume x Time	8.6	23.4	NS	35.5	17	0.05*
MODEL 4						
Vascular Burden	-0.12	0.08	NS	-0.17	0.05	0.002*
Vascular Burden x Time	-0.006	0.013	NS	0.01	0.01	NS

Conclusion I

- Vascular burden was associated with overall poorer performance on tests of executive function after adjusting for amyloid retention and structural brain differences, even in a cohort with substantial amyloid burden
 - Cause is uncertain and may reflect direct toxicity (e.g. diabetes) or increased inflammation or other unidentified process

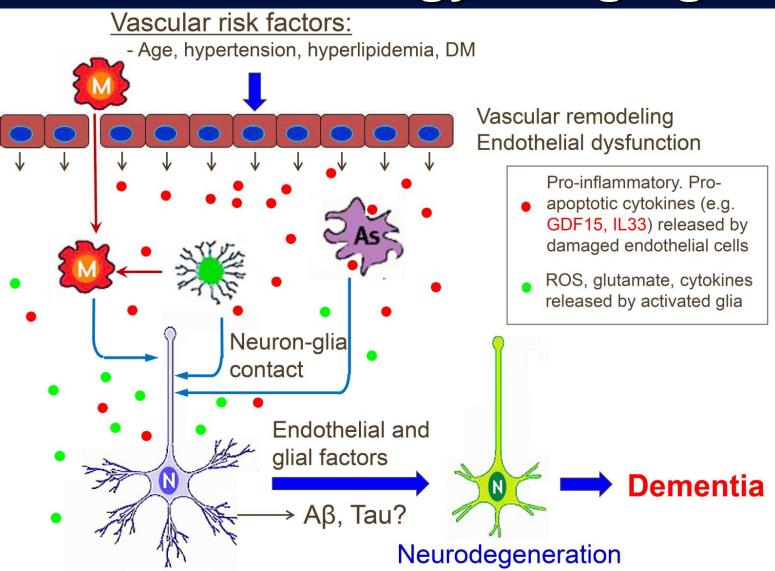
Associations of Circulating Growth Differentiation Factor-15 and ST2 Concentrations With Subclinical Vascular Brain Injury and Incident Stroke

Charlotte Andersson, MD, PhD; Sarah R. Preis, ScD; Alexa Beiser, PhD; Charles DeCarli, MD; Kai C. Wollert, MD; Thomas J. Wang, MD; James L. Januzzi Jr, MD; Ramachandran S. Vasan, MD; Sudha Seshadri, MD


Stroke. 2015;46:00-00. DOI: 10.1161/STROKEAHA.115.009026

			Model 1, n=	2127*	Model 2, n=	2083†	Model 3, n=	1745‡
Outcome	Biomarker	Effect	β (SE)	P Value	β (SE)	P Value	β (SE)	P Value
Total cerebral brain	GDF-15§	Continuous	-1.25 (0.18)	<0.0001	-1.01 (0.19)	<0.0001	-0.86 (0.21)	< 0.0001
volume		Quartiles						
		Q1	0.00 (ref)		0.00 (ref)		0.00 (ref)	
		02	-0.24 (0.17)	0.15	-0.24 (0.17)	0.16	-0.064 (0.18)	0.73
		Q3	-0.40 (0.18)	0.03	-0.31 (0.19)	0.10	-0.15 (0.21)	0.48
		Q4	-1.18 (0.20)	<0.0001	-0.97 (0.21)	<0.0001	-0.71 (0.23)	0.002
		Test for linear trend		<0.0001		<0.0001		0.004
	sST2§	Continuous	-0.77 (0.19)	<0.0001	-0.58 (0.19)	0.002	-0.40 (0.20)	0.05
		Quartiles						
		Q1	0.00 (ref)		0.00 (ref)		0.00 (ref)	
		02	-0.21 (0.17)	0.21	-0.10 (0.17)	0.54	-0.010 (0.18)	0.96
		03	-0.32 (0.17)	0.07	-0.20 (0.17)	0.24	-0.073 (0.19)	0.70
		Q4	-0.82 (0.18)	<0.0001	-0.65 (0.18)	0.0004	-0.47 (0.20)	0.02
		Test for linear trend		<0.0001		0.0005		0.02

Inflammation and Cognition


			Model 1, n=	2463*	Model 2, n=2	Model 2, n=2397†		2008‡
Outcome	Biomarker	Effect	β (SE)	P Value	β (SE)	P Value	β (SE)	P Value
Visual reproductions	GDF-15§	Continuous	-0.78 (0.19)	<0.0001	-0.57 (0.20)	0.004	-0.49 (0.21)	0.02
delayed		Quartiles						
		Q1	0.00 (ref)		0.00 (ref)		0.00 (ref)	
		Q2	-0.33 (0.17)	0.05	-0.33 (0.17)	0.06	-0.40 (0.19)	0.03
		Q3	-0.41 (0.18)	0.03	-0.30 (0.19)	0.12	-0.40 (0.21)	0.06
		Q4	-0.93 (0.21)	<0.0001	-0.78 (0.22)	0.0003	-0.62 (0.24)	0.009
		Test for linear trend		<0.0001		0.001		0.01
	sST2§	Continuous	-0.59 (0.19)	0.002	-0.47 (0.19)	0.02	-0.41 (0.20)	0.04
		Quartiles						
		Q1	0.00 (ref)		0.00 (ref)		0.00 (ref)	
		02	-0.14 (0.17)	0.39	-0.12 (0.17)	0.49	-0.19 (0.18)	0.30
		Q3	-0.16 (0.18)	0.37	-0.11 (0.18)	0.52	-0.08 (0.19)	0.67
		Q4	-0.49 (0.18)	0.008	-0.38 (0.19)	0.04	-0.40 (0.20)	0.048
		Test for linear trend		0.01		0.06		0.10

GDF-15 in Brain

Immunostaining of human cortex from individual who had mixed dementia (AD+vascular dementia). Blue=cell nuclei stained with DAPI. Green=microglia stained with IBA-1. Red =immunostaining for GDF15. Colocalization of GDF15 is noted in microglia (arrows). Bar = 20um.

Model of Inflammation and Brain Pathology in Aging

Conclusions II

- Aging and atherosclerosis lead to increasing inflammation
- Inflammation can lead to brain injury and cognitive decline independent of vascular risk factors
- Inflammation may lead to microglial activation with release of harmful cytokines

IDeA Lab Owen Carmichael* Evan Fletcher Pauline Maillard Baljeet Singh Noel Smith Oliver Martinez

Supported by NIH, State of California and the Alzheimer's Association

*Biomedical Imaging Center, Pennington Biomedical Research Center

http://neuroscience.ucdavis.edu/idealab/

Imaging of Dementia and Aging

IDeA Lab

