Genes, AD Pathology, Cerebrovascular Disease, and AD Dementia

David A. Bennett, MD Director, Rush Alzheimer's Disease Center Robert C. Borwell Professor of Neurological Sciences Rush University Medical Center Chicago, IL

> 14th Annual Mild Cognitive Impairment Symposium Risk Factors for Cognitive Decline Miami, FL January 16, 2016

Acknowledgments

Neelum Aggarwal, MD Konstantinos Arfanakis, PhD Zoe Arvanitakis, MD Lisa Barnes, PhD Patricia Boyle, PhD Aron Buchman, MD Ano Capuano, PhD Robert Dawe, PhD Denis Evans, MD Debra Fleischman, PhD Chris Gaiteri, PhD S. Duke Han, PhD Bryan James, PhD Sue Leurgans, PhD Martha Clare Morris, ScD Sukriti Nag, MD, PhD Julie Schneider, MD Raj Shah, MD Jingyun Yang, PhD Lei Yu, PhD Robert Wilson, PhD Rush Alzheimer's Disease Center Staff

Baylor College of Medicine Josh Shulman, MD, PhD Harvard & The Broad Institute Betsy Bradshaw, PhD Lori Chibnik, PhD Philip De Jager, MD, PhD Alex Meissner, PhD Bruce Yankner, MD, PhD University of British Columbia William Honer, MD Sara Mostafavi, PhD

Karen Ashe, MD Sylvain Lesné, PhD University of Pennsylvan Steven Arnold, MD University of São Paulo Jose Farfel, MD, PhD

Acknowledgments

National Institutes of Health Alzheimer's Association Illinois Department Public Health Elsie Heller Brain Bank Endowment Fund Robert C. Borwell Endowment Fund

Study Participants Religious Orders Study Rush Memory and Aging Project

I have no relevant disclosures

Objectives

- Two Studies of Aging and Dementia with Organ
 Donation
- · Neurobiology of AD dementia
- · Genes, Pathology, and AD dementia

The Religious Orders Study

- Began in 1993
- ~ 1,350 older nuns, priests, and brothers without known dementia from across the U.S.
- All agreed to annual clinical evaluation, blood donation at baseline, and repeated on a subset
- · All agreed to brain donation
- ~ 500 have developed MCI
- ~ 400 have developed dementia
- ~ 675 brain autopsies

The Memory and Aging Project ... because memories should last a lifetime

• Began in 1997

- >1,850 older persons without dementia from across northeastern Illinois
- All agreed to annual clinical evaluation and annual blood donation
- · All agreed to donate brain, spinal cord, muscle, nerve
- ~ 450 have developed MCI
- ~ 325 have developed dementia
- > 650 autopsies

Objectives

- Two Studies of Aging and Dementia with Organ
 Donation
- Neurobiology of AD dementia
- · Genes, Pathology, and AD dementia

Summary

•Mixed pathology is the most common cause of AD dementia

Many pathologies contribute to AD dementiaMuch of AD dementia is not explained by pathology

•Are there neurobiologic factors that protect us from AD dementia despite the accumulation of pathology?

Summary

•A number of neurobiologic factors appear to protect us from AD dementia despite the accumulation of pathology?

•Given the complexity of the AD dementia phenotype, it is likely that some or many genomic variants for AD dementia are not related to AD pathology

Objectives

- Two Studies of Aging and Dementia with Organ
 Donation
- Neurobiology of AD dementia
- · Genes, Pathology, and AD dementia

Genetic Susceptibility for Alzheimer Disease
Neuritic Plaque Pathology

Gene SNP ^a A1 A2 MAF Beta (SE) ^b P Value (R1 rs5701713 A G 0.20 0.077 (0.03508) 0.03 CLU rs1532278 T C 0.39 0.000 (0.03058) 99 P/CALM rs561655 G A 0.35 -0.045 (0.02883) 12 BIN1 rs7561528 A G 0.34 -0.009 (0.02801) .76 ABCA7 rs3764550 G T 0.09 0.180 (0.08262) .03 M54A rs4938933 C T 0.43 -0.004 (0.02772) .89 CD33 rs3865444 A C 0.30 -0.004 (0.0254) .17 CD2AP rs9349407 C G 0.25 0.071 (0.03223) .03 EPHA1 rs11767557 C T 0.18 0.024 (0.04087) .56	Table 1. Associa	Fable 1. Association of Alzheimer Disease Susceptibility Loci With Neuritic Plaque Pathologic Burden									
CRI rs6701713 A G 0.20 0.077 (0.03508) 0.03 CLU rs1532278 T C 0.39 0.000 (0.03508) .99 PICALM rs561655 G A 0.35 -0.045 (0.02883) .12 BIN1 rs7561528 A G 0.34 -0.009 (0.02801) .76 ABCA7 rs3764550 G T 0.09 0.180 (0.08262) .03 M54A rs4938933 C T 0.43 -0.004 (0.02772) .89 C033 rs3865444 A C 0.30 -0.040 (0.02254) .17 CD2AP rs9349407 C G 0.25 0.071 (0.03223) .03 EPHA1 rs11767557 C T 0.18 0.024 (0.04087) .56	Gene	SNP ^a	A1	A2	MAF	Beta (SE) ^b	P Value				
CLU rs1532278 T C 0.39 0.000 (0.03058) .99 P/CALM rs561655 G A 0.35 -0.045 (0.02883) .12 BIN1 rs5761528 A G 0.34 -0.009 (0.02801) .76 ABCA7 ★ rs3764550 G T 0.04 -0.009 (0.02822) .03 MS4A rs4938933 C T 0.43 -0.004 (0.02772) .89 CD33 rs3865444 A C 0.30 -0.040 (0.02294) .17 CD2AP ★ rs9349407 C G 0.25 0.071 (0.03223) 03 EPHA1 rs11767557 C T 0.18 0.024 (0.04087) .56	CR1	rs6701713	Α	G	0.20	0.077 (0.03508)	.03				
PICALM rs561655 G A 0.35 -0.045 (0.02883) .12 BIN1 rs7551528 A G 0.34 -0.009 (0.02801) .76 ABCA7 rs3764650 G T 0.09 0.180 (0.08262) .03 MS4A rs4983933 C T 0.43 -0.004 (0.02772) .89 CD33 rs3865444 A C 0.30 -0.040 (0.02954) .17 CD2AP rs9349407 C G 0.25 0.071 (0.03223) .03 EPHA1 rs11767557 C T 0.18 0.024 (0.04087) .56	CLU	rs1532278	T	С	0.39	0.000 (0.03058)	.99				
BIN1 rs7561528 A G 0.34 -0.009 (0.02801) .76 ABCA7 ★ rs3764550 G T 0.09 0.180 (0.08262) .03 M54A rs4938933 C T 0.43 -0.004 (0.02772) .89 C033 rs3865444 A C 0.30 -0.004 (0.0254) .17 C02AP ★ rs9349407 C G 0.25 0.071 (0.03223) .03 EPHAI rs11767557 C T 0.18 0.024 (0.04087) .56	PICALM	rs561655	G	Α	0.35	-0.045 (0.02883)	.12				
ABCA7 rs3764650 G T 0.09 0.180 (0.08262) .03 MS4A rs4938933 C T 0.43 -0.004 (0.02772) .89 C033 rs3865444 A C 0.30 -0.040 (0.02954) .17 C02AP rs9349407 C G 0.25 0.071 (0.03223) .03 EPHA1 rs11767557 C T 0.18 0.024 (0.04087) .56	BIN1	rs7561528	Α	G	0.34	-0.009 (0.02801)	.76				
MS4A rs4938933 C T 0.43 -0.004 (0.02772) .89 CD33 rs3865444 A C 0.30 -0.040 (0.02954) .17 CD2AP rs9349407 C G 0.25 0.071 (0.03223) .03 EPHA1 rs11767557 C T 0.18 0.024 (0.04087) .56	ABCA7 🔶	rs3764650	G	T	0.09	0.180 (0.08262)	.03				
CD33 rs3865444 A C 0.30 -0.040 (0.02954) .17 CD2AP ★ rs9349407 C G 0.25 0.071 (0.03223) 0.3 EPHA1 rs11767557 C T 0.18 0.024 (0.04087) .56	MS4A	rs4938933	С	Т	0.43	-0.004 (0.02772)	.89				
CD2AP ★ rs9349407 C G 0.25 0.071 (0.03223) .03 EPHAI rs11767557 C T 0.18 0.024 (0.04087) .56	CD33	rs3865444	Α	С	0.30	-0.040 (0.02954)	.17				
EPHA1 rs11767557 C T 0.18 0.024 (0.04087) .56	CD2AP	rs9349407	С	G	0.25	0.071 (0.03223)	.03				
	EPHA1	rs11767557	С	Т	0.18	0.024 (0.04087)	.56				
	Shulman JM	l, et al. JAMA Neur	ology. 2013	;70:1150	-57.						

Gene Neur	etic Susce itic Plaqu	eptibili ue Path	ty for iology	Alzhein /	ner Disease	15 =		Expected under the Hall Observed
16 14 12 10 10 10 10 10 10 10						4 20 0[501-] LODIFOLIESIO	i	λ = 1.009
	1 2 3	4 5	6 7 1	9 10 11	12 13 14 15 16 17 18 19 20 21 22	0	5 Expected Distributio	10 15 n (-log10 of P value)
	Chromosome	SNP	A1 /	2 MAF	Beta (SE) ^c	P Value	Genes	
	19							
		rs4420038	6 /	0.18	0.3463 (0.0395)	1.49×10^{-17}	APOE	
	4	rs6817475	G	0.18	0.3463 (0.0395) 0.1672 (0.0326)	1.49 × 10 ⁻¹⁷ 3.80 × 10 ⁻⁷	APOE KCNIP4	
	4 9	rs6817475 rs12551233	GI	0.18	0.3463 (0.0395) 0.1672 (0.0326) -0.3216 (0.0632)	1.49 × 10 ⁻¹⁷ 3.80 × 10 ⁻⁷ 4.79 × 10 ⁻⁷	APOE KCNIP4 PTGS1	
	4 9 6	rs6817475 rs12551233 rs3892710	G I G I T (0.18 0.33 0.06 0.15	0.3463 (0.0395) 0.1672 (0.0326) -0.3216 (0.0632) -0.2007 (0.0421)	1.49 × 10 ⁻¹⁷ 3.80 × 10 ⁻⁷ 4.79 × 10 ⁻⁷ 2.32 × 10 ⁻⁶	APOE KCNIP4 PTGS1 HLA-DQA2	
	4 9 6 21	rs6817475 rs12551233 rs3892710 rs2829887	G T C	0.18 0.33 0.06 0.15 0.43	0.3463 (0.0395) 0.1672 (0.0326) -0.3216 (0.0632) -0.2007 (0.0421) -0.1384 (0.0295)	1.49 × 10 ⁻¹⁷ 3.80 × 10 ⁻⁷ 4.79 × 10 ⁻⁷ 2.32 × 10 ⁻⁶ 3.33 × 10 ⁻⁶	APOE KCNIP4 PTGS1 HLA-DQA2 ATP5J-APP	
	4 9 6 21 9	rs6817475 rs12551233 rs3892710 rs2829887 rs9407730		0.18 0.33 0.06 0.15 0.43 0.13	0.3463 (0.0395) 0.1672 (0.0326) -0.3216 (0.0632) -0.2007 (0.0421) -0.1384 (0.0295) -0.2118 (0.0453)	$\begin{array}{c} 1.49 \times 10^{-17} \\ 3.80 \times 10^{-7} \\ 4.79 \times 10^{-7} \\ 2.32 \times 10^{-6} \\ 3.33 \times 10^{-6} \\ 3.61 \times 10^{-6} \end{array}$	APOE KCNIP4 PTGS1 HLA-DQA2 ATP5J-APP	*
	4 9 6 21 9 6	rs6817475 rs12551233 rs3892710 rs2829887 rs9407730 rs4642480		0.18 0.33 0.06 0.15 0.43 0.13 0.43	0.3463 (0.0395) 0.1672 (0.0326) -0.3216 (0.0632) -0.207 (0.0421) -0.1384 (0.0295) -0.2118 (0.0453) 0.1432 (0.0307)	$\begin{array}{c} 1.49 \times 10^{-17} \\ 3.80 \times 10^{-7} \\ 4.79 \times 10^{-7} \\ 2.32 \times 10^{-6} \\ 3.33 \times 10^{-6} \\ 3.61 \times 10^{-6} \\ 3.65 \times 10^{-6} \end{array}$	APOE KCNIP4 PTGS1 HLA-DQA2 ATP5J-APP	
	4 9 6 21 9 6 3	rs6817475 rs12551233 rs3892710 rs2829887 rs9407730 rs4642480 rs4564921		0.18 0.33 0.06 0.15 0.43 0.13 0.43 0.13 0.48 0.37	0.3463 (0.0395) 0.1672 (0.0326) -0.3216 (0.0632) -0.2007 (0.0421) -0.1384 (0.0295) -0.2118 (0.0453) 0.1432 (0.0307) 0.1388 (0.0304)	$\begin{array}{c} 1.49 \times 10^{-17} \\ 3.80 \times 10^{-7} \\ 4.79 \times 10^{-7} \\ 2.32 \times 10^{-6} \\ 3.33 \times 10^{-6} \\ 3.61 \times 10^{-6} \\ 3.65 \times 10^{-6} \\ 6.12 \times 10^{-6} \end{array}$	APOE KCNIP4 PTGS1 HLA-DQA2 ATP5J-APP	*
	4 9 6 21 9 6 3 14	rs6817475 rs12551233 rs3892710 rs2829887 rs9407730 rs4642480 rs4564921 rs187911		0.18 0.33 0.06 0.15 0.43 0.13 0.043 0.13 0.048 0.37 0.041	0.3463 (0.395) 0.1672 (0.0326) -0.3216 (0.0632) -0.2007 (0.0421) -0.1384 (0.0295) -0.2118 (0.0453) 0.1432 (0.0307) 0.1388 (0.0304) -0.1434 (0.0315)	$\begin{array}{c} 1.49 \times 10^{-17} \\ 3.80 \times 10^{-7} \\ 4.79 \times 10^{-7} \\ 2.32 \times 10^{-6} \\ 3.33 \times 10^{-6} \\ 3.61 \times 10^{-6} \\ 3.65 \times 10^{-6} \\ 6.12 \times 10^{-6} \\ 6.23 \times 10^{-6} \end{array}$	APOE KCNIP4 PTGS1 HLA-DQA2 ATP5J-APP NMNAT3 SLC35F4	
	4 9 6 21 9 6 3 14 14	rs6817475 rs12551233 rs3892710 rs2829887 rs9407730 rs4642480 rs4564921 rs187911 rs10149826		A 0.18 7 0.33 A 0.06 C 0.15 C 0.43 A 0.13 A 0.48 G 0.37 A 0.41 C 0.12	0.3463 (0.3395) 0.1672 (0.0326) -0.3216 (0.0632) -0.2007 (0.0421) -0.1384 (0.0295) -0.2118 (0.0453) 0.1432 (0.0307) 0.1388 (0.0304) -0.1434 (0.0315) 0.2210 (0.0494)	$\begin{array}{c} 1.49 \times 10^{-17} \\ 3.80 \times 10^{-7} \\ 4.79 \times 10^{-7} \\ 2.32 \times 10^{-6} \\ 3.33 \times 10^{-6} \\ 3.61 \times 10^{-6} \\ 3.65 \times 10^{-6} \\ 6.12 \times 10^{-6} \\ 6.23 \times 10^{-6} \\ 9.15 \times 10^{-6} \end{array}$	APOE KCNIP4 PTGS1 HLA-DQA2 ATP5J-APP NMNAT3 SLC35F4 NPAS3	*
	4 9 6 21 9 6 3 14 14 14 2	rs6817475 rs12551233 rs3892710 rs2829887 rs9407730 rs4642480 rs4564921 rs187911 rs10149826 rs12613305	G 7 G 7 T 0 G 7 G 7 G 7 G 7 G 7 T 0 G 7 G 7 T 0 G 7 G 7 G 7 G 7 G 7 G 7 G 7 G 7 G 7 G 7	A 0.18 7 0.33 A 0.06 C 0.15 C 0.43 A 0.13 A 0.43 A 0.43 A 0.43 C 0.37 A 0.41 C 0.12 G 0.47	0.3463 (0.3395) 0.1672 (0.6326) -0.3216 (0.0632) -0.3216 (0.0632) -0.1344 (0.0255) -0.2118 (0.0453) 0.1432 (0.3307) 0.1388 (0.0304) -0.1434 (0.0315) 0.2210 (0.0494) 0.1311 (0.0293)	$\begin{array}{c} 1.49 \times 10^{-17} \\ 3.80 \times 10^{-7} \\ 4.79 \times 10^{-7} \\ 2.32 \times 10^{-6} \\ 3.33 \times 10^{-6} \\ 3.65 \times 10^{-6} \\ 6.12 \times 10^{-6} \\ 6.23 \times 10^{-6} \\ 9.15 \times 10^{-6} \\ 9.36 \times 10^{-6} \end{array}$	APOE KCNIP4 PTGS1 HLA-DQA2 ATP5J-APP NMNAT3 SLC35F4 NPAS3 PARD3B	*

Ge In or	enetic Su farction Neurop	scept and A athol	ibility rterio ogic E	for Ischem losclerosis valuations	48 SNPs proven s	asso troke	ciated strok risk factors	e or	
CHR	SNP	Allele	GWAS	Macroscopic infa	rcts	Microscopic infa	rcts	Arteriolosclerosis	
				OR (95% CI)	р	OR (95% CI)	р	OR (95% CI)	р
2	rs7578326	А	DMII	0.73 (0.58, 0.93)	0.0110	0.71 (0.55, 0.92)	0.0088	0.90 (0.73, 1.11)	0.3375
5	rs3846663	Т	LDL	1.30 (1.04, 1.63)	0.0212	1.11 (0.87, 1.41)	0.4083	1.08 (0.89, 1.31)	0.4230
3	rs1470579	С	DMII	1.32 (1.04, 1.68)	0.0222	1.21 (0.94, 1.57)	0.1365	1.04 (0.85, 1.28)	0.6794
19	rs2075650	G	LDL	1.64 (1.07, 2.52)	0.0241	1.46 (0.93, 2.30)	0.0976	1.14 (0.79, 1.66)	0.4843
10	rs12779790	G	DMII	1.40 (1.03, 1.89)	0.0292	1.43 (1.04, 1.96)	0.0285	1.03 (0.79, 1.34)	0.8450
12	rs2681472	A	HYP	1.38 (1.03, 1.86)	0.0304	0.98 (0.72, 1.32)	0.8787	0.96 (0.75, 1.23)	0.7579
1	rs12740374	G	LDL	1.33 (1.01, 1.75)	0.0422	1.15 (0.86, 1.54)	0.3400	1.11 (0.88, 1.39)	0.3781
5	rs4457053	G	DMII	0.85 (0.63, 1.15)	0.2876	0.71 (0.51, 0.99)	0.0441	0.86 (0.67, 1.11)	0.2520
7	rs864745	Т	DMII	0.91 (0.73, 1.12)	0.3620	1.00 (0.80, 1.26)	0.9939	0.80 (0.66, 0.96)	0.0142
12	rs7961581	С	DMII	1.03 (0.81, 1.32)	0.7941	1.10 (0.85, 1.43)	0.4732	1.26 (1.01, 1.56)	0.0382
16	rs7193343	Т	AF	1.10 (0.80, 1.51)	0.5526	1.08 (0.77, 1.52)	0.6524	0.75 (0.57, 0.99)	0.0392
11	rs5215	С	DMII	0.98 (0.79, 1.22)	0.8758	1.03 (0.82, 1.30)	0.7896	0.82 (0.68, 0.99)	0.0428
1	rs11206510	Т	LDL	0.91 (0.69, 1.21)	0.5217	1.10 (0.81, 1.49)	0.5465	1.28 (1.01, 1.63)	0.0451
	DMII – T2	diabet	tes, LD	L, (* 6 4) 5	C. STOR		1	1-8-1-1-	
	HVP_hype	rtoneir	nn ΔF-	and the second of the	1	and the file	and a star	100	
			<i>, </i>	2 June 14	ALC: NOT	Real All	1. alson by	The Sheet is	3
	atrial fibril	lation		Aller 1	A. Contract		N. N.	a south of the	
				and the second		L'E STA INTO	13. 14. 12	Sa To Ash	1
						В	A.C.S	B	1
Cho	ou SH, et al	. Cereb	orovascu	ılar Disease. 2	2013;36:	181-188.			

Ge In oi	enetic S farction n Neuro	uscep and patho	otibili Arteri ologic	ty for Ischei iolosclerosi Evaluation	51 SNPs putative stroke risk factors				
CHR	CHR SNP		GWAS	Macroscopic infarcts		Microscopic infar	cts	Arteriolosclerosis	
				OR (95% CI)	р	OR (95% CI)	р	OR (95% CI)	р
9 18 16 17 9 17 8 15	rs1883025 rs4939883 rs1864163 rs12936587 rs2383207 rs46522 rs2954029 rs3825807	T A G G T A A	HDL HDL CAD MI CAD TG CAD	$\begin{array}{c} 1.38 \ (1.08, 1.75) \\ 0.68 \ (0.51, 0.92) \\ 1.59 \ (1.08, 2.34) \\ 1.29 \ (1.03, 1.61) \\ 1.26 \ (1.02, 1.55) \\ 0.80 \ (0.64, 1.00) \\ 0.98 \ (0.79, 1.21) \\ 0.99 \ (0.79, 1.24) \end{array}$	0.0094 0.0116 0.0179 0.0262 0.0314 0.0491 0.8196 0.9025	0.86 (0.66, 1.12) 0.89 (0.65, 1.21) 1.25 (0.83, 1.88) 1.16 (0.91, 1.47) 1.10 (0.88, 1.38) 1.03 (0.81, 1.30) 0.74 (0.58, 0.92) 0.78 (0.61, 0.99)	0.2591 0.4569 0.2818 0.2295 0.3932 0.8099 0.0084 0.0437	1.04 (0.84, 1.28) 0.93 (0.73, 1.19) 1.16 (0.83, 1.63) 1.04 (0.86, 1.26) 1.11 (0.93, 1.33) 0.96 (0.79, 1.15) 0.97 (0.81, 1.17) 0.86 (0.71, 1.05)	0.7468 0.5873 0.3710 0.6824 0.2660 0.6362 0.7546 0.1330
11	rs7395662	G	HDL	0.98 (0.79, 1.22)	0.8611	1.13 (0.89, 1.43)	0.3097	0.81 (0.67, 0.97)	0.0244
Cho	ou SH, et a	al. Cer	ebrova:	scular Disease.	. 2013;36:	181-188.	sease,	ra - mgiycena	55

Summary

- Genomic risk factors for AD dementia operate through a number pathways including some in the cerebrovascular disease pathway and others involved in immune and inflammatory function
- Neuropathologic traits can be exploited for gene discovery and for mechanistic studies

Objectives

- Two Studies of Aging and Dementia with Organ
 Donation
- Neurobiology of AD dementia
- Genes, Pathology, and AD dementia
 Epigenome and transcriptome

				Observed Test	P	alue
Locus	Chromosome	Covered Region	No. of CpGs	Statistic	Permuted	Adjusted
SORL1	11	121222911:121604471	69	289.6763	<1.0 × 10 ⁻⁶	<.000028
ABCA7	19	940101:1165570	255	666.5471	6.0 × 10 ⁻⁶	.000084
ILA-DRB5	6	32385153:32598006	48	157.3848	5.0 × 10 ⁻⁵	.000466
LC24A4	14	92688924:93067825	62	188.9191	.00013	.000910
BIN1	2	127705598:127964903	95	247.3020	.0032	.017920
NPP5D	2	233825035:234216549	87	214.4398	.0188	.087733
FERMT2	14	53223988:53517815	54	138.7177	.0239	.091700
TREM2	6	41026245:41230922	74	182.7488	.0262	.091700
111	8	27354433:27572328	70	173.0821	.0316	.098311

Epigenetic age of the pre-fro plaques, amyloid load, and A functioning	ntal cortex is as .lzheimer's dise	sociated with neuri ase related cognitiv	tic e			
A bicor=0.67, p=2.2e-92		β (SE)			P-value	
8-	GCF -0.340 (0.163)				0.019	
m Age		Be	ta Coefficient (One-Tailed P-V	'alue)	
ND D	Amyloid Load NP		0.100	0 (0.006) 1 (0.004)		
	DP NFT		0.468 (0.004) 0.377 (0.021)			
70 80 90 100 Age	Tangle Score Results are from inc	lependent multivariate mode	0.030 Is that adjust fo) (0.041) r age at death, s	tudy, and sex	
		GCF	-0.336	-0.229	-0.114	
			(0.020)	(0.087)	(0.256)	
		Amyloid		0.094		
				(0.015)		
		Neuritic Plaques			0.553	
Levine ME, et al. Aging. 201	5:12:1198-1211				(0.004)	

Alzheimer's disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci

> ANK1 and RHBDF2 connect to PTK2B, an AD gene that is a key element of the signaling cascade involved in modulating the activation of microglia and infiltrating macrophages. Several other AD genes, such as CD33 and EPHA1, connect to this molecule as well.

De Jager PL, et al. Nature Neuroscience. 2014;17:1156-1163.

Summary

- Multiple pathologies and resilience factors are associated wit AD dementia
- Genomic risk factors for AD dementia operate through a number pathways including some in the cerebrovascular disease pathway and others involved in immune and inflammatory function
- Neuropathologic traits can be exploited for gene discovery and mechanistic studies, alone or combined with other layers of molecular genomics