Biomarkers, Cognitive Reserve and Cognition in Alzheimer's Disease

Prashanthi Vemuri, Ph.D.

Assistant Professor of Radiology

Mayo Clinic Rochester, MN, USA

Jan 19-20 2013

MCI Symposium, Miami, FLORIDA

Pathological Cascade

Biomarkers in AD Considered for Clinical Trials and Observational Studies

- Brain Amyloid-osis
 - PIB-PET
 - CSF A β_{1-42}
- Neuronal Dysfunction and Tau mediated Injury
 - CSF t-tau
 - FDG-PET
- Neurodegeneration
 - Structural MRI Hippocampal volume and STAND-scores

Role of Biomarkers in Alzheimer's Disease

- Diagnosis
- Prediction of Future Progression
- Evaluating Disease Progression
- Sample Selection and Enrichment
- Mechanistic Inferences about the disease process

Overview of the talk

- Biomarkers and Cognition in AD
 - Prediction of Future Progression
 - Evaluating Disease Progression
- Cognitive Reserve in AD

MRI Biomarker - STAND Scores

Automated Individual Patient Diagnosis

New Subject
MRI Scan

STAND Algorithm (Library of AD and CN)

≥ 0 ABNORMAL

< 0 NORMAL

- Accuracy of the method in an independent sample ~ 90 % (Vemuri et al. 2008a Neurolmage)
- STAND-score correlates strongly with Braak NFT stages (Vemuri et al. 2008b Neurolmage)

MRI and CSF in ADNI

Baseline CSF (t-tau, Aβ1-42) and MRI scans were obtained in 399 subjects (109 CN, 192 aMCI, 98 AD). We computed STAND-scores for these 399 subjects.

	STAND	t-tau	Αβ ₁₋₄₂	t-tau/Aβ ₁₋₄₂
AUROC	0.90	0.80	0.80	0.86
Threshold*	0.25	87 pg/mL	182 pg/mL	0.46
Sensitivity (%)	71	72	90	87
Specificity (%)	95	76	65	75
Test accuracy (%)	84	74	77	81

- Biomarkers and Cognition in AD
 - Prediction of Future Progression
 - Evaluating Disease Progression

Cognitive Reserve in AD

Predictors of Future Progression in AD

Table 4. Factors Influencing Rates of Progression

Predictor of Progression

Clinical severity

ApoE ε4 carrier status

Atrophy on MRI

18FDG PET pattern of Alzheimer disease

CSF markers compatible with Alzheimer disease

Positive amyloid imaging scan

MRI: Jack et al. 1999, Visser et al. 1999

- ➤ FDG: Mosconi et al. 2004, Drzezga et al. 2005, Yuan Y et al. 2009
- CSF: Hampel et al. 2003, Riemenschneider et al. 2005, Herukka et al. 2005

PIB: Okello et al. 2009, Morris et al. 2009

Why biomarkers when clinical severity – predictive?

Table 4. Factors Influencing Rates of Progression

Predictor of Progression

Clinical severity

Average value of CDR-SB over 2-years by diagnosis group for the 25th, 50th, and 75th percentiles of baseline CDR-SB after accounting for baseline age

Value of MRI and CSF biomarkers?

Baseline CDR-SB in MCI and AD

Baseline biomarkers predicting future cognitive decline in MCI – after adjusting for baseline cognitive performance

MRI – STAND

CSF t-tau/Aβ1-42 ratio

Biomarker Prediction of Future Progression of MCI to AD

Biomarker	Model χ ² (p)*	Nonlinearity $\chi^2(p)^{\dagger}$	Q3 vs Q1 HR (95% CI)*
STAND score	19.0 (<0.001)	1.5 (0.22)	2.6 (1.7, 4.2)
Aβ ₁₋₄₂	8.2 (0.02)	5.4 (0.02)	0.8 (0.5, 1.3)
log(t-tau)	6.8 (0.03)	5.0 (0.03)	1.7 (1.1, 2.6)
log(p-tau _{181P})	6.6 (0.04)	1.5 (0.22)	1.8 (1.1, 2.9)
$log(t-tau/A\beta_{1-42})$	11.0 (0.004)	8.5 (0.004)	2.0 (1.1, 3.4)

Two Sample Pattern Differences: MCI Stables vs. Progressors

- Biomarkers and Cognition in AD
 - Prediction of Future Progression
 - Evaluating Disease Progression

Cognitive Reserve in AD

Disease Progression: Pathology

Disease Progression: MRI and CSF

- ADNI sample
 - Baseline and 12-month CSF (t-tau, $A\beta_{1-42}$) and MRI in 312 subjects (92 CN, 149 aMCI, 71 AD).
- Significant annual change in MRI which differed by clinical group.

Vemuri et al. 2010 Neurology

Disease Progression: Correlation with Cognition

Spearman rank-order correlations (and p-values)

		<u> </u>			
Annual Change	All (n=312)	CN (n=92)	aMCl (n=149)	AD (n=71)	
	Annual cha	ange vent. vo	l.		
MMSE	<u>-0.33 (<0.001)</u>	-0.19 (0.07)	-0.29 (<0.001)	-0.31 (0.01)	
CDR-SB	0.37 (<0.001)	0.09 (0.4)	0.30 (<0.001)	0.38 (0)	
Annual change Aβ ₁₋₄₂					
MMSE	0.14 (0.02)	0.20 (0.06)	0.05 (0.55)	0.30 (0.01)	
CDR-SB	-0.05 (0.36)	-0.02 (0.87)	-0.05 (0.51)	-0.11 (0.34)	
Annual change t-tau					
MMSE	0.11 (0.05)	0.12 (0.25)	0.10 (0.22)	0.06 (0.6)	
CDR-SB	-0.05 (0.4)	-0.02 (0.83)	-0.04 (0.64)	-0.03 (0.81)	
MAYO CLINIC					

Vemuri et al. 2010 Neurology

Efficacy of Therapeutics: Required Sample Size

Estimated sample size required to detect a 25% improvement in annualized change in cognitive status or biomarkers with 80% power (α =0.05) in aMCI and AD

Variable	aMCI (N)	AD (N)
MMSE	1963	766
CDR-SB	604	445
ADAS-Cog	2543	510
Vent Vol	186	100
Αβ ₁₋₄₂	>10 K	>10 K
t-tau	>10 K	>10 K
t-tau/ Aβ ₁₋₄₂	>10 K	>10 K

- Biomarkers and Cognition in AD
 - Prediction of Future Progression
 - Evaluating Disease Progression

Cognitive Reserve in AD

Degrees of Pathology for Clinical Expression of Disease

Why do some subjects with AD pathology remain cognitively normal during life while some others develop dementia?

COGNITIVE RESERVE

IQ, Education, Physical activities and Cognitive activities

Two different studies:

ADNI (CN, MCI and AD)

Mayo Clinic Study of Aging (Non demented population based sample)

Mayo Clinic Study of Aging Biomarkers: MRI, PIB, FDG; Reserve: Lifestyle 515 non-demented population based elderly

- Intellectual Lifestyle Current and Lifetime
 - Education
 - Job Score
 - Current Intellectual Activity

- Physical Activity Lifestyle
 - Current Physical Activity

Path Analysis

Model summarizing the data

 λ for Lifetime intellectual activity >> Current intellectual activity λ for physical activity $\sim=0$

Where are we?

- Different biomarkers to measure different aspects of the pathology.
- Biomarkers provide information regarding disease progression (in addition to the clinical information).
- Neurodegeneration (MRI) become abnormal later and closely correlates with cognition – disease progression.
- Studies provide evidence that cognitive reserve (lifestyle variables and IQ) may delay the onset of dementia but do not significantly influence the expression of AD pathophysiology.

Future Directions and Considerations

- Longitudinal studies and statistical methods to map the local and global dynamic progression of the disease.
- Account for individual differences in Alzheimer's disease risk modifiers.
- Efficiently apply these disease models for patient care.

Acknowledgements

MAYO CLINIC ROCHESTER:

Radiology

Clifford R. Jack Jr., M.D.

Kejal Kantarci, M.D.

Health Science Research

Stephen W. Weigand

Timothy Lesnick

Heather D. Wiste

Scott A. Przybelski

Neurology

David S. Knopman, M.D.

Bradley F. Boeve, M.D.

Ronald C. Petersen, M.D, Ph.D.

ADNI COLLABORATORS:

Les Shaw, Ph.D.

John Trojanowski, M.D., Ph.D.

Matt Bernstein, Ph.D.

Paul Aisen, M.D.

Michael Weiner, M.D.

GRANT SUPPORT:

K99/R00 NIH Pathway to Independence Award, Alzheimer's Association New Investigator Award.

NIH grants: P50 AG16574, R01 AG11378.

Thank you!

